首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weak complexes of isocyanic acid (HNCO) with nitrogen were studied computationally employing MP2, B2PLYPD3 and B3LYPD3 methods and experimentally by FTIR matrix isolation technique. The results show that HNCO interacts specifically with N2. For the 1:1 stoichiometry, three stable minima were located on the potential energy surface. The most stable of them involves a weak, almost linear hydrogen bond from the NH group of the acid molecule to nitrogen molecule lone pair. Two other structures are bound by van der Waals interactions of N⋯N and C⋯N types. The 1:2 and 2:1 HNCO complexes with nitrogen were computationally tracked as well. Similar types of interactions as in the 1:1 complexes were found in the case of the higher stoichiometry complexes. Analysis of the HNCO/N2/Ar spectra after deposition indicates that the 1:1 hydrogen-bonded complex is prevalent in argon matrices with a small amount of the van der Waals structures also present. Upon annealing, complexes of the 1:2 and 2:1 stoichiometry were detected as well.  相似文献   

2.
Isothermal titration calorimetry (ITC) was used to characterize inclusion complex formation of natural cyclodextrins (α- and β-cyclodextrin) with three drugs ((+)brompheniramine, (±)brompheniramine, cyclopentolate) in aqueous solutions. ITC measurements were carried out at 298.15 K on a Microcal OMEGA ultrasensitive titration calorimeter (MicroCal Inc.). The experimental data were analyzed on the basis of the model of a single set of identical sites (ITC tutorial guide). β-CD forms inclusion complexes of stoichiometry 1:1 with the all investigated drugs. In turn, smaller molecule of α-CD forms inclusion complexes of two different stoichiometry: with bigger molecules ((+)brompheniramine and (±)brompheniramine) of a stoichiometry 2:1 and with smaller molecules (cyclopentolate) of a stoichiometry 1:2. Based on the experimental values of equilibrium constant (K) and enthalpy of complex formation (ΔH), the Gibbs energy of complex formation (ΔG), and the entropy of complex formation (ΔS), have been calculated, for all the investigated systems. Obtained results showed that complex formation of β-CD (bigger molecule with wider cavity compared to β-CD) with both (+)brompheniramine, (±)brompheniramine, and cyclopentolate is enthalpy driven while complexes of α-CD with the all investigated drugs are enthalpy-entropy stabilized. This indicated that the difference in the cavity dimensions is reflecting in different driving forces of complex formation and binding modes what resulted in different stoichiometry of the obtained inclusion complexes.  相似文献   

3.
Laser-induced fluorescence and action spectroscopy experiments have identified multiple conformers of the D2...ICl van der Waals complex for both ortho-D2 (o-D2) and para-D2 (p-D2). As with the analogous H2...ICl van der Waals complexes [Darr, J. P.; Crowther, A. C.; Loomis, R. A.; Ray, S. E.; McCoy, A. B. J. Phys. Chem. A 2007, 111, 13387], the C2v conformer with the deuterium molecule localized at the iodine atom end of the dihalogen is significantly more stable than the asymmetric conformer that has the deuterium positioned orthogonally to the ICl bond axis, D0' = 223.9(2.4) versus 97.3(8)-103.9(3) cm(-1) for p-D2...I(35)Cl(X, v'=0). For both conformers, complexes containing p-D2 are found to be more strongly bound than those with o-D2. The electronically excited D2...ICl(A, v') and D2...ICl(B, v') complexes are found to have equilibrium geometries that are nearly the same as those of the ground-state asymmetric structures. Calculated D2...ICl(B, v'=3) energies and probability amplitudes obtained using a simple scaled He + ICl(B, v'=3) potential provide clues to the nature of the different excited-state levels accessed.  相似文献   

4.
The complexation of three isoquinoline alkaloids berberine, palmatine and coralyne with α-, β-, and γ-CDs were studied by absorption, fluorescence, circular dichroism, NMR spectroscopy and microcalorimetric assay techniques. Their binding constant (K BH) values were determined by Benesi–Hildebrand equation. All the alkaloids formed 1:1 stoichiometry complexes with the cyclodextrins (CDs). The binding affinity is largest in β-CD followed by γ-, and α-CD for coralyne, followed by berberine and then palmatine. The thermodynamic parameters of the complexation were determined by calorimetry. The stoichiometry of complex formation and the variation of the apparent binding constant from spectroscopic studies were confirmed by calorimetry. The formation of the inclusion complexes was entropy driven in almost all the systems. Coralyne formed the strongest complex with all the CDs, followed by berberine and palmatine in that order. Coralyne-β-CD complex was studied through NMR, indicating more than one interaction mode.  相似文献   

5.
Reactions of Silylated Phosphorane Imines with Iodine Monochloride and Iodine Trichloride. The Crystal Structures of [Me3SiNPMe3 · ICl], [Ph3PNCl · ICl], and [Me3PN(H)PMe3][ICl2]2 The donor-acceptor complex [Me3SiNPMe3 · ICl] has been prepared from Me3SiNPMe3 and ICl in acetonitrile solution forming yellow-orange crystals. [Ph3PNCl · ICl] can be prepared by the reaction of Me3SiNPPh3 with ICl3 in dichloromethane solution forming pale yellow crystals. [Me3PN(H)PMe3][ICl2]2 is formed in a small amount by a slow reaction of Me3SiNPMe3 with ICl3 in CCl4 suspension in the presence of traces of moisture. All samples are characterized by IR spectroscopy and by X-ray structure analyses. [Me3SiNPMe3 · ICl] (1) : Space group Iba2, Z = 8, structure solution with 1 727 observed unique reflections, R = 0.051. Lattice dimensions at ?60°C: a = 1 510.7, b = 1 862.8, c = 988.9 pm. 1 has a molecular structure in which the N atom of the phosphorane imine is connected with the iodine atom of the ICl molecule in a linear arrangement N? I? Cl. Bond lengths N? I = 222.7 pm, I? Cl = 265.1 pm. [Ph3PNCl · ICl] (2) : Space group Pna21, Z = 4, structure solution with 1 530 observed unique reflections, R = 0.030. Lattice dimensions at 20°C: a = 1 522.8, b = 1 408.3, c = 865.8 pm. 2 has a molecular structure in which the N atom of the N chlorophosphorane imine is connected with the iodine atom of the ICl molecule in a linear arrangement. Bond lengths N? Cl = 174.4 pm, N? I = 229.5 pm, I? Cl = 251.2 pm. [Me3PN(H)PMe3][ICl2]2 (3) : Space group P21/c, Z = 4, structure solution with 1 989 observed unique reflections, R = 0.029. Lattice dimensions at ?50°C: a = 1 223.1, b = 1 090.2, c = 1 482.8 pm, β = 112.21°. 3 consists of [Me3PN(H)PMe3]2+ ions and ICl2? anions. The PNP bond angle of the dication amounts to 134.4° with PN distances of 165.6 and 166.1 pm, approximately according to double bonds.  相似文献   

6.
Six new ZnX2 (X=Cl, Br) complexes with N16-oxides of sparteine, 2-methylsparteine and 2-phenylsparteine as ligands have been synthesized and characterized by MS, IR, NMR and DFT methods. All complexes have 1 : 1 stoichiometry. Complexation with N16-oxides involves inversion of the configuration at N16, converting ring C from a boat into a chair with the oxygen engaged in coordination. All complexes investigated are of composition [(L–H)+(ZnX3)?] (where L is N-oxide). The structures of the complexes obtained have been compared with those of the monoperchlorate salts of the N-oxides.  相似文献   

7.
The interaction of two symmetrically branched tris-cyclam derivatives based on 1,3,5-trimethylenebenzene and phloroglucinol cores with nickel(II), copper(II), zinc(II) and cadmium(II) is reported. All four metal ions yield solid complexes in which the metal : ligand ratio is 3 : 1. For both ligand types, spectrophotometric titrations confirm the formation of nickel(II) and copper(II) complexes of similar 3 : 1 stoichiometry in dimethyl sulfoxide. Visible spectral, electrochemical, magnetic moment, ESR and NMR studies have been performed to probe the nature of the respective complexes. Where appropriate, the results from the above metal-ion studies are compared with those from parallel investigations in which the corresponding (substituted) mono-cyclam analogues were employed as the ligands. A structural determination employing a poorly diffracting crystal of the trinuclear nickel(II) complex of the tris-cyclam ligand incorporating a 1,3,5-trimethylenebenzene core was successfully carried out with the aid of a synchrotron radiation source. A nickel ion occupies each cyclam ring in a square-planar coordination arrangement, with each cyclam ring adopting the stable trans-III configuration.  相似文献   

8.
The scandium complexes of Sc(PMBP)3·H2O (non-crystal) and Sc(PMBP)3 (crystal) with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) were prepared and characterized by thermal analysis, IR, NMR and MS spectroscopies. The crystal structure of the complex, obtained by X-ray analysis, indicates that PMBP is a bidentate ligand in the complex and that the Sc atom is six-coordinate and is in a meridional octahedral environment. The order of the ring current effect on the pyrazolone ring is Sc(PMBP)3 >PMBP(enol)> PMBP(keto).

The metal to ligand stoichiometry was found to be 1:3. The crystalline complex melts at 209 °C, followed by degradation at about 310 °C, with the beginning of decomposition. The enthalpy of melting was found to be 61 kJ/mol. On the other hand, the non-crystalline complex was found to change into a crystalline complex at 176 °C with an exothermic reaction before melting at 217 °C. The IR band observed at approximately, 450 cm−1 is possibly due to the stretching of the Sc–O bond.  相似文献   


9.
Using laser-induced fluorescence and two-laser, pump-probe spectroscopy, collision-induced vibrational relaxation is observed to compete with the dissociation of electronically excited ICl in a helium carrier gas expansion. By thoroughly characterizing the expansion properties, we observe that collisions of ICl(B, v'= 3) molecules with He atoms in the expansion induce vibrational relaxation of the initially prepared dihalogen down to rotor states in the next lower ICl(B,v'= 2) level on timescales that compete with the rate for non-adiabatic transfer from the B state to the Z1 state. The resulting ICl(B,v'= 2,j') product rotational distribution, along with the analogous ICl(B,v'= 1,j') distribution formed by collisional relaxation of molecules in the long-lived ICl(B,v'= 2) level are compared to ICl(B,v'= 2,j') products formed by vibrational predissociation of He...ICl complexes prepared in different intermolecular vibrational levels within the He + ICl(B,v'= 3) potential. No evidence is observed for resonance-enhanced collisional cross sections, even at the low temperatures achieved, T < 1.0 K.  相似文献   

10.
Transitions of two different stereoisomers of the He...ICl(X,v" = 0) weakly bound complex, one with a T-shaped orientation and another that is most likely linear, have been observed in laser-induced fluorescence experiments performed in the ICl B-X region. Here we present experimental and theoretical results aimed at confirming the previous assignments and at gaining additional insights into the He+ICl interactions. High resolution action spectra were recorded in the same region to identify those features that could be attributed to transitions of the He...I35Cl(X,v" = 0) isomers and not to higher-order complexes, Hen...I35Cl, where n > or = 2, or I37Cl containing species. Calculations of the rovibronic spectra of the He...I35Cl complexes in the ICl B-X, 2-0 and 3-0 regions were performed using an ab initio potential energy surface for the He+ICl(X,v" = 0) ground state and two different pairwise additive potentials for the He+ICl(B,v' = 2,3) excited states. The rotation-vibration energies and wave functions for the He cdots, three dots, centered I35Cl complexes were obtained for all bound states with total angular momentum J < 10 using both of these potentials. Electronic spectra were generated using these results, assuming that the transition moment lies along the ICl bond and is not perturbed by the presence of the helium atom. The calculations qualitatively reproduce the He cdots, three dots, centered I35Cl action spectrum and strongly support the previous assignments. The calculations also indicate that some of the spectral congestion observed near the linear band may be attributed to transitions of the linear isomer to multiple intermolecular levels in the excited state. Coriolis coupling strongly mixes He cdots, three dots, centered ICl(B,v') states with rotational excitation, making simulations and assignments of the linear band observed in the experimental spectrum difficult.  相似文献   

11.
The study focuses on the formation of inclusion complexes of indole chalcone (IC) derivatives with β-cyclodextrin (β-CD), which involves absorption and steady state fluorescence spectroscopies. The formation of inclusion complexes is validated by increase in their absorbance and fluorescence intensity as well as the blue shift with increase in the concentration of β-CD in the aqueous solution. The stoichiometries and binding constants (Kin) of these complexes have been investigated by monitoring their absorbance and fluorescence spectral profiles. The data are analyzed by Benesi–Hildebrand plots as well as Job’s method, which indicate 1:1 stoichiometry of IC:β-CD complexes. Fluorescence measurements are also used to investigate the effect of temperature on the stability of inclusion complexes. Stability of IC:β-CD complexes is significantly affected with variation in substituents on the phenyl ring and temperature. It is observed that the stability of the inclusion complex decreases with increase in temperature; Kin(293 K)?>?Kin(298 K)?>?Kin(308 K)?>?Kin(318 K). All the experimental results and the geometrical data obtained using PM3 semiempirical method illustrate the partial inclusion of IC derivatives from the phenyl ring side in β-CD cavity. The binding process of IC derivatives with β-CD is found to be exothermic in nature and seems to be controlled by electrostatic and hydrophobic forces. The binding free energies calculated using semiemprical PM3 method for IC:β-CD complexes are found to be in the order: I?<?OH–I?<?Me–I?<?OMe–I?<?NH2–I, which largely supports the findings based on the experimental binding constants.  相似文献   

12.
The structures of 1,4-bis(pyrazol-1'-yl)-2,3,5,6- tetrakis(3',5'-dimethylpyrazol-1'-yl) benzene 1, its monohydrate, 1a, four 1 : 2 host : guest complexes, 1b–1e (acetic, propionic, pentanoic, and (±)-2-methyl butyric acids) and a di-picrate salt, 1f, have been determined by X-Ray analysis. In all complexes, in the salt and in the monohydrate compound, the host molecules are hydrogen bonded to two centrosymmetric related guests and to the water molecule which is disordered over two positions to mimic the inclusion complexes. In all compounds, the host exhibits Ci symmetry having the lone pair on the N(2) atom of each pyrazole pointing alternately upwards (u) and downwards (d) from the benzene ring. 1H and 13C NMR spectra of the free host 1 and of the complexes are consistent with the ududud conformation and the stoicheiometry of the inclusion compounds.  相似文献   

13.
Density functional theory (DFT) structure calculations and time-dependent DFT electronic excitation calculations have been performed on chlorogenic acid (H(3)CGA), a polyphenolic compound, used as a model molecule of humic substances. The different deprotonated forms of H(3)CGA have also been investigated. H(3)CGA is a multisite ligand that presents several metal complexing sites in competition, notably the carboxylic and catechol moieties. In low acidic aqueous medium, the complexation of Pb(II) has been followed by electronic absorption spectrometry. The formation of two complexes of stoichiometry metal:ligand 1:1 (log beta(1:1) = 3.39) and 2:1 (log beta(2:1) = 7.12) has been highlighted with use of chemometric methods. The theoretical spectrum of the 1:1 complex obtained by TD-DFT methodology shows the formation of a chelate [Pb(H(2)CGA)(H(2)O)(3)](+) with the metal fixation at the level of the carboxylate function. The second complexing site, the catechol moiety, is rapidly involved in the formation of the 2:1 complex from molar ratios [metal]/[ligand] higher than 0.1. The electronic transitions calculated for both free ligand and complexes involved the same molecular orbitals, and no ligand-metal or metal-ligand charge transfer is observed.  相似文献   

14.
Complexes of n- and s-butyllithium (BL) with THF, (CH3)2O and (CH3)3N have been investigated over a wide temperature range (+20 to ?100°C). These electron donors (D) are much less actively complexed with s-BL than with n-BL. For both alkyllithium compounds the trend of D to complexation decreases in the following order: THF > (CH3)2O > (CH3)3N. Usually, for the n-BL/D systems several complexes coexist with different Li/D ratios. At low temperatures and at the n-BL/D ratio ? 4, in addition to complexes with the limiting stoichiometry (n-BL)4 · 4D, associates complexed with one D molecule and a hexamer n-BL are present. The bands of ν(CLi) stretching vibrations for s-BL complexes are not very characteristic and therefore only the average stoichiometry of the complex can be evaluated; the limiting stoichiometry detected was (s-BL)4 · 4D. It is supposed that as the temperature decreases the inversion of the molecules of s-BL occurs during their interaction with excess ethers.  相似文献   

15.
The electron donor-acceptor (EDA) interactions between menadione (i.e., 2-methyl-1,4-naphthoquinone, which is also called 'Vitamin K3') and a series of phenols (viz., phenol, resorcinol and p-quinol) have been studied in CCl4 medium. In all the cases, charge transfer (CT) bands have been located. The CT transition energies (h nu(CT)) of the complexes are found to change systematically with change in the number and position of the -OH groups in the aromatic ring of the phenol moiety. From the trends in the h nu(CT) values, the Hückel parameters (h(O) and k(C-O)) for the -OH group have been obtained. The CT transition energies are well correlated with the ionisation potentials of the phenols. From an analysis of this variation the electron affinity of Vitamin K3 has been found to be 2.28 eV. The stoichiometry of the complexes in each case has been found to be 1(menadione):2 (phenol). Formation constants of the complexes have been determined at four different temperatures from which the enthalpies and entropies of formation of the complexes have been estimated.  相似文献   

16.
The ability of lanthanide(III) ions to form stable complexeswith three different macrocyclic ligands, L1 , L2 and L3 , has been investigated.The Schiff base macrocycle L1 and its corresponding reduced ligand L2 arederived from 2,6-bis(2-formylphenoxymethyl)pyridine and diethylentriamine;the reduced ligand L3 is derived from 2,6-diformylpyridine and N,N-bis(3-aminopropyl)methylamine. Lanthanide nitrate complexes of L1 and L2 have beenprepared by direct reaction between each ligand and the appropriate hydrated lanthanidenitrate; attempts to obtain the corresponding perchlorate complexes have been unsuccessful.All nitrate complexes of L1 give the expected [1:1, Ln:L1 ] stoichiometry; however, complexes obtained with L2 show a [2:1, Ln:L2 ] stoichiometry. Finally, complexation reactions with L3 have been carried out in order to investigatethe coordination capability of this small and flexible ligand towards the Ln(III) ions.  相似文献   

17.
Complexes of Cu(II), Ni(II) and Co(II) with the Schiff bases derived from o-aminobenzoic acid with salicylaldehyde and its 5-chloro and 5-bromo derivatives have been prepared. The 1:1 (metal-ligand) stoichiometry of these complexes is shown by elemental analysis, gravimetric estimations and conductometric titrations while the structures of the complexes are proved by i.r. spectra and thermogravimetric analysis. The magnetic susceptibility and electronic spectra of Cu(II) complexes indicate the nonplanar binuclear structures while that of Ni(II) and Co(II) show their paramagnetic octahedral geometry. The molar conductance values in nitrobenzene indicate the nonelectrolytic behaviour of the complexes. The results show that the complexes of the type (Cu·L)2, Ni·L·3H2O and Co·L·3H2O are formed having solvent molecule in coordination with the metal ion. The monopyridine and monoammonia adducts of Cu(II) complexes were found to be monomeric.  相似文献   

18.
This paper describes the self-assembly of a new class of foldamer-based molecular tweezers, whose rigid folded conformations are stabilized by intramolecular hydrogen bonding. Two zinc porphyrin units are introduced to the ends of molecular tweezers Zn(2)1 and Zn(2)2, while three zinc porphyrin units are incorporated to the S-shaped bi-tweezers Zn(3)3, which may be regarded as a combination of two Zn(2)1 molecules. Due to the preorganized U-shaped feature, Zn(2)1 and Zn(2)2 are able to strongly complex C60, C70, and C60 derivative 25 in chloroform or toluene in a 1:1 binding stoichiometry, whereas Zn(3)3, which possesses two tweezer units, complexes the guests in a 1:2 stoichiometry. More stable complex Zn(3)3.24 is formed between Zn(3)3 and 24, a linear molecule bearing two C60 moieties at the ends, as a result of the cooperative interaction of two binding sites. Chiral induction is observed for all the three receptors upon complexation with C60-incoporated chiral phenylalanine derivative 29, although the complexation of 29 by the folding receptors is pronouncedly weaker than that of C60 and 25 due to increased steric hindrance. The driving force for the formation of the complexes is the well established pi-pi stacking between the zinc porphyrin and fullerene units. The 1H and 13C NMR, UV-vis, fluorescent, and circular dichroism spectroscopy have been used to investigate the complexing behavior of the folding receptors and the fullerene guests. The association constants of the corresponding complexes in toluene and chloroform (if possible) have been evaluated with the UV-vis and fluorescent titration experiments.  相似文献   

19.
Bloomfield MS 《Talanta》2004,64(5):1175-1182
A simple, rapid and automated assay for ‘active oxygen’ originating from hydrogen peroxide, or other organic peroxides, in products is presented employing flow injection (FI) analysis. The product is dispersed and peroxide dissolved in a solvent of 5% (v/v) acetic acid, which constitutes the carrier stream. Ammonium molybdate can be added to this carrier stream to increase sensitivity as required. The sample solution is injected into the acid carrier stream, which is then merged with iodide ion in situ in a two-stream manifold. The ‘active oxygen’ in the product oxidises acidified iodide to iodine, which is detected spectrophotometrically at 350 nm. The closed conditions prevent interference from atmospheric oxygen and the short reaction time minimises the potential for interference from side reactions. Standard HPLC equipment is used throughout, employing a back-pressure to improve precision (high pressure flow injection). Conditions have been investigated using screening multivariate experimental design (two-level quarter fractional factorial design incorporating centre points) to identify and optimise the critical variables. The method has been fully validated (with sample solution R.S.D.s typically < 0.5%, LOQs of 0.04 or 0.006 μg ml−1 as ‘active oxygen’ for acid or acid/molybdate carriers respectively) and is quicker and simpler than the currently employed manual titration approach. It should be applicable to a range of ‘active oxygen’ products.  相似文献   

20.
Coordination compounds of mercury(II) chloride, bromide, cyanide and thiocyanate with N-methylnicotinamide, a potentially bidentate ligand, have been prepared. The complexesisolated have 1∶1 (metal:ligand)stoichiometry. Molecular weight measurements in molten camphor indicate that the mercury (II) chloride and bromide complexes are monomeric. Based on conductance values, molecular weight determinations and infrared spectral data, it is inferred that in the solid state in all these complexes the metal ion has a coordination number three and is bonded to the N-methylnicotinamide via its pyridine ring nitrogen, and is terminally bonded to the halogen/pseudohalogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号