首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hippurates of Co(II), Ni(II), Cu(II) and Zn(II) were isolated from the solution, their quantitative composition and the way of coordination of metal — ligand were determined and the conditions and products of thermal decomposition during heating in air atmosphere up to 1273 K were studied. The complexes of Ni(II), Cu(II) and Zn(II) heated lose some water molecules and then decompose to MO. The hippurate of Co(II) heated loses some water molecules and then decomposes to CoO with intermediate formation Co3O4.
Zusammenfassung Aus Lösung wurden die Co(II)-, Ni(II)-, Cu(II)- und Zn(II)-Salze der Hippursäure gewonnen, ihre quantitative Zusammensetzung sowie die Art der Koordination der Metall-Ligandenbindung bestimmt. Weiterhin wurden die Bedingungen und Produkte der thermischen Zersetzung beim Erhitzen in einer Luftatmosphäre bis 1273 K untersucht. Die Komplexe von Ni(II), Cu(II) und Zn(II) verlieren beim Erhitzen ein paar Moleküle Wasser und zersetzen sich anschlieend zu MO. Co(II)-hippurat gibt beim Erhitzen einige Moleküle Wasser ab und zersetzt sich dann über die Zwischenstufe Co3O4 zu CoO.
  相似文献   

2.
Contact of thin layers of gelatin-immobilized copper(II) hexacyanoferrate(II) matrices with aqueous solutions of Co(II), Ni(II), Zn(II), and Cd(II) chlorides results in partial substitution of these ions for Cu(II) to give (dd)-heterobinuclear hexacyanoferrates(II) of copper(II) and the corresponding double-charged ion.  相似文献   

3.
Synthesis, spectral and solution studies on 2-ethyl imidazolate-bridged (2-EtIm) homo-binuclear copper(II)-copper(II) and hetero-binuclear copper(II)-zinc(II) homologue are described. Magnetic moment values of homo-binuclear complexes indicate that the imidazolate group can mediate antiferromagnetic interactions. Optical spectra of hetero-binuclear complex at varying pH values suggest that the imidazolate-bridged complex is stable over the pH-range 7.15–10.0.  相似文献   

4.
The complex equilibria of the Ni(II), Cu(II), and Zn(II) complexes withN-phenylglycine have been studied by computer analysis of potentiometric data. The mode of coordination has been established by1H NMR and IR studies.
Nickel(II), Kupfer(II) und Zink(II)-Komplexe mitN-Phenylglycin in Wasser-Methanol-Lösung
Zusammenfassung Anhand der Computer-Analyse von potentiometrischen Daten wurden die Bildungsgleichgewichte von Nickel(II), Kupfer(II) und Zinc(II)-Komplexen mitN-Phenylglycin untersucht. Zur Bestätigung des Koordinationstyps wurden1H-NMR- und IR-Messungen vorgenommen.
  相似文献   

5.
The cobalt, nickel, copper and zinc atoms in bis(1,10-phenanthroline)bis(salicylato-O)metal(II) monomeric octahedral complexes [M(Hsal)2(phen)2nH2O, (M: Co(II), n=1; Cu(II), n=1.5 and Ni(II), Zn(II), n=2) are coordinated by the salicylato monoanion (Hsal) through the carboxyl oxygen in a monodentate fashion and by the 1,10-phenanthroline (phen) molecule through the two amine nitrogen atoms in a bidentate chelating manner. On the basis of the DTGmax, the thermal stability of the hydrated complexes follows order: Ni(II) (149°C)>Co(II) (134°C)>Zn(II) (132°C)>Cu(II) (68°C) in static air atmosphere. In the second stage, the pyrolysis of the anhydrous complexes takes place. The third stage of decomposition is associated with a strong exothermic oxidation process (DTA curves: 410, 453, 500 and 450°C for the Co(II), Ni(II), Cu(II) and Zn(II) complexes, respectively). The final decomposition products, namely CoO, NiO, CuO and ZnO, were identified by IR spectroscopy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)3,3-dimethylglutarates were investigated and their quantitative composition, solubility in water at 293 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with general formula MC7H10O4nH2O (n=0−2) were recorded and their thermal decomposition in air were studied. During heating the hydrated complexes of Mn(II),Co(II), Ni(II) and Cu(II) are dehydrated in one step and next all the anhydrous complexes decompose to oxides directly (Mn, Co, Zn) or with intermediate formation free metal (Ni,Cu) or oxocarbonates (Cd). The carboxylate groups in the complexes studied are bidentate. The magnetic moments for the paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II)attain values 5.62, 5.25, 2.91 and 1.41 M.B., respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Complexes of Mn(II), Co(II), Ni(II), Pd(II) and Pt(II) were synthesized with the macrocyclic ligand, i.e., 2,3,9,10-tetraketo-1,4,8,11-tetraazacycoletradecane. The ligand was prepared by the [2 + 2] condensation of diethyloxalate and 1,3-diamino propane and characterized by elemental analysis, mass, IR and 1H NMR spectral studies. All the complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic and electron paramagnetic resonance spectral studies. The molar conductance measurements of Mn(II), Co(II) and Ni(II) complexes in DMF correspond to non electrolyte nature, whereas Pd(II) and Pt(II) complexes are 1:2 electrolyte. On the basis of spectral studies an octahedral geometry has been assigned for Mn(II), Co(II) and Ni(II) complexes, whereas square planar geometry assigned for Pd(II) and Pt(II). In vitro the ligand and its metal complexes were evaluated against plant pathogenic fungi (Fusarium odum, Aspergillus niger and Rhizoctonia bataticola) and some compounds found to be more active as commercially available fungicide like Chlorothalonil.  相似文献   

8.
Summary 2-Pyridylphenylacetonitrile (ppa) is oxidized by copper(II) halides in 1,2-dichloroethane to 1,2-dicyano-1,2-diphenyl-1,2-di(2-pyridyl)ethane (dcppe), yielding 41 complexes of dcppe with copper(II) dihalide, [CuX2(dcppe)4] (green). Nickel(II) and zinc(II) chlorides react with ppa giving complexes of a general formula [MCl2(ppa)2].Dcppe reacts with copper(II), zinc(II) chlorides and copper(II) bromide yielding complexes of formulae [CuCl2(dcppe)4] (yellow), [ZnCl2(dcppe)2] and [CuBr2(dcppe)]. No reaction is observed with cobalt(II) and nickel(II) chlorides.  相似文献   

9.
The 1,10-phenanthroline (phen) complexes of Co(II), Ni(II), Cu(II) and Cd(II) orotates were synthesized and characterized by elemental analysis, magnetic susceptibility, spectral methods (UV-vis and FTIR) and thermal analysis techniques (TG, DTG and DTA). The Co(II), Ni(II), Cu(II) and Cd(II) ions in diaquabis(1,10-phenanthroline)metal(II) diorotate octahedral complexes [M(H2O)2(phen)2](H2Or)2·nH2O (M=Co(II), n=2.25; Ni(II), n=3; Cu(II) and Cd(II), n=2) are coordinated by two aqua ligands and two moles of phen molecules as chelating ligands through their two nitrogen atoms. The monoanionic orotate behaves as a counter ion in the complexes. On the basis of the first DTGmax, the thermal stability of the hydrated complexes follows the order: Cd(II), 68°C 68°C  相似文献   

10.
Cobalt(II), nickel(II) and copper(II) complexation with acenaphthenequinone monosemicarbazone (AQSC) has been studied spectrophotometrically. The Co(II), Ni(II) and Cu(II) complexes are soluble in ethanol medium and exhibit maximum absorbance at 410, 420 and 430 nm, respectively. The sensitivity of the reactions are 0.012, 0.02 and 0.01 μg/cm2 for cobalt, nickel and copper systems. All the three complexes show maximum and constant absorbance in the pH range 8.4 to 9.8, 6.3 to 8.4 and 5.4 to 8.0 for Co-AQSC, Ni-AQSC and Cu-AQSC, respectively. Nickel and copper in some alloys have also been analysed.  相似文献   

11.
The thermal properties of the Cu(II), Ni(II) and Co(II) complexes of iminodiacetic acid (H2IMDA) were determined using TG, DTG and DSC techniques. The complexes, of general formula, MIMDA-2H2O evolved water of hydration from 50 to 150°C which was followed by the decomposition of the anhydrous complex in the 250 to 400°C temperature range. The thermal stability, as determined by procedural decomposition temperatures, was: Ni(II) >Co(II) >Cu(II). The thermal stability is discussed in terms of IR spectra, ΔH, and ΔS, as well as thermal data.  相似文献   

12.
The crystal structure of ethylenediaminecadmium(II) tetracyanocadmate(II)-benzene(1/2),I, has been redetermined based on 1632 reflections collected anew for the crystal coated with epoxy resin, with a final conventionalR=0.038;I crystallizes in space groupP4222, witha=b=8.265(1) andc=15.512(3) Å, andZ=2. Ethylenediaminecadmium(II) tetracyanocadmate(II),II, is concluded to be identical with the residual metal complex host ofI, remaining after the liberation of the guest benzene molecules;II crystallizes from an aqueous solution containing bis- or tris-ethylenediaminecadmium(II) tetracyanocadmate(II) in space groupI41/acd, witha=b=14.366(1) andc=23.771(4) Å, andZ=16; refinement led to a conventionalR=0.043 for 1181 reflections. The bridging ethylenediamine ligand inI turns to a chelating one inII; dissociation and recombination should occur in the coordination sphere of the six-coordinate cadmium atom, whenII is derived fromI by the liberation of the guest molecules. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82018 (30 pages).Dedicated to Professor H. M. Powell.  相似文献   

13.
Summary Complexes of furan and thiophene azo-oximes with iron(II), cobalt(III), nickel(II) and copper(II) have been prepared and characterised. Iron(II), cobalt(III) and copper(II) complexes are diamagnetic in the solid state. The diamagnetism of the copper(II) chelates is suggestive of antiferromagnetic interaction between two copper centres.1H n.m.r. spectral data suggest atrans-octahedral geometry for the tris-chelates of cobalt(III). Nickel(II) complexes are paramagnetic, in contrast to the diamagnetism of the analogous complexes of arylazooximes. The electronic spectra are suggestive of octahedral geometry for the iron(II), cobalt(III) and nickel(II) complexes, andD 4h -symmetry for copper(II). Infrared data indicate N-bonding of the oximino-group to the metal ions.  相似文献   

14.
Summary Cobalt(II), nickel(II), palladium(II) and platinum(II) complexes witho-(OCD),m-(MCD) andp-chlorophenyldithiocarbamate (PCD) ligands have been synthesised and characterised by chemical analyses, molecular weight determinations, conductance measurements, electronic and i.r. spectral studies. The thermal behaviour of the complexes has been studied by t.g. and d.t.a. techniques in a static air atmosphere and heats of reaction of different decomposition steps have been calculated from the d.t.a. curves. The thermal decomposition products of the complexes were identified by elemental analyses and i.r. spectra.  相似文献   

15.

The first 2-pyridylethanol (pyet) complexes of manganese(II), iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) saccharinates, were synthesized and characterized by elemental analyses, magnetic measurements, UV-Vis, and IR spectroscopic techniques. Crystal and molecular structures of the iron(II) and copper(II) complexes were determined by single crystal X-ray diffractometry. The experimental data showed that all the complexes are mononuclear with a general formula [M(H2O)2(pyet)2](sac)2, where sac is the saccharinate anion. All the metal ions are octahedrally coordinated by two aqua and two pyet ligands. The pyet ligand acts as a bidentate ligand through its amine nitrogen and hydroxyl oxygen atoms forming a six-membered chelate ring, while the sac ions remain outside the coordination sphere. All the complexes are isomorphous with a monoclinic space group P21/n and Z = 2.  相似文献   

16.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 4-methylphthalates were investigated and their composition, solubility in water at 295 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with molar ratio of metal to organic ligand of 1.0:1.0 and general formula: M [ CH3C6H3(CO2)2nH2o (n=1-3) were recorded and their decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Mn, Co, Ni, Zn, Cd) or two steps (Cu) and next the anhydrous complexes decompose to oxides directly (Cu, Zn), with intermediate formation of carbonates (Mn, Cd), oxocarbonates (Ni) or carbonate and free metal (Co). The carboxylate groups in the complexes studied are mono- and bidentate (Co, Ni), bidentate chelating and bridging (Zn) or bidentate chelating (Mn, Cu, Cd). The magnetic moments for paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.92, 5.05, 3.36 and 1.96 M.B., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Some 1:1 and 1:2 adducts of cobalt(II), nickel(II) and copper(II) chloroacetates with quinoline N -oxide have been isolated by the interaction of the appropriate metal chloroacetate with quinoline N -oxide (QuinNo). The complexes isolated are of 1:1 stoichiometry of formula [M(CH3_xClxCOO)2QuinNO] (when M=Co(II), Ni(II); X=1,2 and 3 and when M=Cu(II), X=l and 2) except copper(II) trichloroacetate which yields an adduct of 1:2 stoichiometry of formula[Cu(CCI3COO)2(QuinNO)2]. The adducts isolated are soluble in common organic solvents.  相似文献   

18.
Summary 1,1-Dibenzoylacetylferrocene (DBAFc) complexes of iron(II), cobalt(II), nickel(II) and copper(II) have been prepared and characterized. The physical properties of the complexes are discussed on the basis of uv-visible, Mössbauer spectra and magnetic measurements.  相似文献   

19.
Mononuclear Zn(II), Cd(II), Cu(II), Ni(II) and Pd(II) metal complexes of Schiff-base ligand(HL1) derived from 8-acetyl-7-hydroxycoumarin and P-phenylenediamine were prepared and characterized by microanalytical, mass, UV–Vis, IR, 1H NMR, 13C NMR, ESR, conductance and fluorescence studies. The measured low molar conductance values in DMSO indicate that the complexes are non-electrolytes. The structures of the solid complexes under study are established by using IR, electronic and ESR spectroscopy suggesting that Zn(II) and Ni(II) complexes are octahedral, Cd(II) complex is tetrahedral, Cu(II) and Pd(II) complexes are square planar. The ESR spectrum of the Cu(II) complex in DMSO at 298 and 150 K was recorded and its salient features are reported, it supports the mononuclear structure. The Schiff base exhibited photoluminescence originating from intraligand (π–π*) transitions. Metal-mediated enhancement is observed on complexation of HL with Zn(II) and Cd(II), whereas metal-mediated fluorescence quenching occurs in Cu(II), Ni(II) and Pd(II).  相似文献   

20.
The removal of Cu(II), Zn(II) and Ni(II) from solutions using biosorption in cork powder is described. The adsorption isotherms were determined, along with the effect of different variables, such as the solid–liquid ratio, temperature and pH on the removal efficiency of the metals. The potentiometric titration curve of the cork biomass was determined and some zeta-potential studies were carried out. The effect of the pre-treatment by Fisher esterification on the biosorption properties of cork is also presented. It was concluded that the adsorption of the heavy metals was favoured by an increase in pH. The degree of heavy metal removal is directly related to the concentration of cork biomass, and the maximum sorption capacity of cork biomass for Cu(II), Zn(II) and Ni(II) was 0.63, 0.76 and 0.34 meq./g, respectively. It is shown that ion exchange plays a more important role in the sorption of Cu(II) and Ni(II) on cork biomass than in the sorption of Zn(II). The pre-treatment by Fisher esterification confirmed the important role of the carboxylic groups in binding of Cu(II) and Ni(II) and showed that they are the only binding sites for Zn(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号