首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
To elucidate the particle growth mechanism in propylene polymerization with high-yield MgCl2-supported Ziegler-Natta catalysts, observations have been carried out by electron microscopy on a series of samples having different degrees of polymer growth (from 0.1 to 1000 g/g of catalyst). Topics such as surface and bulk morphology, catalyst fragmentation, as well as distribution of the catalyst residues in the polymer have been investigated. The experimental data suggest that if the site distribution in the catalyst is uniform and the polymerization conditions are mild, the polymer growth starts uniformly throughout the catalyst particle, which then undergoes an even and progressive fragmentation into very fine units homeogeneously dispersed in the polymer matrix. The above results thus provide further experimental support to the particle growth mechanism outlined in the multigrain or polymeric flow models. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The results of studies of the synthesis and properties of supported titanium-magnesium catalysts for propylene polymerization performed at the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, are considered. The composition of the catalysts is TiCl4/D1/MgCl2-AlEt3/D2, where D1 and D2 are stereoregulating donors. With the use of the procedure proposed for the synthesis of titanium-magnesium catalysts, the morphology of catalyst particles depends on the stage of the preparation of a Mg-containing support. The titanium-magnesium catalysts developed afforded polypropylene (PP) in a high yield; this PP was characterized by high isotacticity and excellent morphology. The controllable fragmentation of the catalyst by the polymer is of crucial importance for the retention of the morphology of titanium-magnesium catalyst particles in PP. The fragmentation of catalyst particles to microparticles occurred in the formation of more than 100 g of PP per gram of the catalyst. The surface complexes were studied by DRIFT and MAS NMR spectroscopy and chemical analysis. It was shown that the role of internal donors is to regulate the distribution of TiCl4 on different MgCl2 faces and, thereby, to influence the properties of PP. It was found that chlorine-containing complexes of aluminum compounds were formed on the catalyst surface by the interaction of the catalyst with AlEt3; these complexes can block the major portion of titanium chloride. Data on the number of active sites and the rate constants of polymer chain propagation (k p) at various sites indicate that donor D1 increases the stereospecificity of the catalyst because of an increase in the fraction of highly stereospecific active sites, at which k p is much higher than that at low-stereospecificity active sites. Donor D2 enhances the role of D1. Similar values of k p at sites with the same stereospecificity in titanium-magnesium catalysts and TiCl3 suggest that the role of the support mainly consists in an increase in the dispersity of titanium chloride.  相似文献   

3.
With the development of methods to support metallocenes and methylaluminoxane cocatalysts on suitable carriers, it became possible to combine the specific advantages of homogeneous metallocene catalysis with those of heterogeneous Ziegler catalysts in olefin polymerization. By means of ethylene polymerization it could be shown that the method of supporting methylaluminoxane and metallocene on porous silica has a substantial influence on the progress of polymerization. In particular, fragmentation of catalyst particles during polymerization can be circumvented, maintaining the catalyst activity, if active catalyst sites are being generated on the particle surface only. A method of preparation for such newly designed supported metallocene catalysts is presented, where the active catalyst sites are located exclusively on the particle surface. Furthermore, the kinetics of ethylene polymerization and morphology properties prior to and after polymerization are discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 677–682, 1999  相似文献   

4.
A family of polymer‐attached phenanthrolines was prepared from solvothermal copolymerization of divinylbenzene with N‐(1,10‐phenanthroline‐5‐yl)acrylamide in different ratios. The polymer‐supported copper catalysts were obtained through typical impregnation with copper(II) salts. The polymers and supported copper catalysts have been characterized by N2 adsortion, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TG); they exhibit a high surface area, hierarchical porosity, large pore volume, and high thermal and chemical stabilities. The copper catalyst has proved to be highly active for Glaser homocoupling of alkynes and Huisgen 1,3‐diolar cycloaddition of alkynes with benzyl azide under mild conditions at low catalyst loading. The heterogeneous copper catalyst is more active than commonly used homogeneous and nonporous polystyrene‐supported copper catalysts. In particular, the catalyst is easily recovered and can be recycled at least ten times without any obvious loss in catalytic activity. Metal leaching was prevented due to the strong binding ability of phenanthroline and products were not contaminated with copper, as determined by ICP analysis.  相似文献   

5.
A catalyst with porous polystyrene beads supported Cp2ZrCl2 was prepared and tested for ethylene polymerization with methylaluminoxane as a cocatalyst. By comparison, the porous supported catalyst maintained higher activity and produced polyethylene with better morphology than its corresponding solid supported catalyst. The differences between activities of the catalysts and morphologies of the products were reasonably explained by the fragmentation processes of support as frequently observed with the inorganic supported Ziegler–Natta catalysts. Investigation into the distribution of polystyrene in the polyethylene revealed the fact that the porous polystyrene supported catalyst had undergone fragmentation during polymerization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3313–3319, 2003  相似文献   

6.
Drastic changes occur during the initial stages of the α-olefin polymerization over heterogeneous catalysts. Fragmentation of the support takes place as polymer is formed at the active sites within the voids of the support/catalyst. Magnesium chloride-supported titanium catalyst/polymer particles have been analyzed employing high-resolution computed microtomography (CMT) using synchrotron radiation at Brookhaven National Laboratory. The changes in morphology, the spatial distribution of the support/catalyst fragments, porosity, and polymer distribution in single growing polypropylene and polyethylene particles have been studied. These studies documented considerable macroporosity ( > 2 μm in size) within the growing catalyst/support/polymer particles. The largest pores may be due to agglomeration of smaller subparticles. Our results confirm that the initial fragmentation of the support proceeds readily and uniformly to yield a multi-grain growth of subparticle agglomerates. The support/catalyst fragments appear to be distributed relatively uniformly within the growing polymer particle. The surface of the subparticle agglomerates is accessible through the void-space between growing catalyst/particle grains. This may facilitate monomer transport to the activate sites through the polymer/catalyst particles. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Summary: A short stop reactor (SSR) was developed to study nascent particle morphology and reaction kinetics in the gas‐phase polymerisation of olefins on supported catalysts. It is shown that the SSR provides a useful means to look into important phenomena such as catalyst fragmentation and catalyst site activation and deactivation that take place during the very early stages of the heterogeneous polymerisation of olefins. New experimental results obtained from gas‐phase polymerisation of ethylene show that, depending on the type of catalyst system and on the reaction conditions, different kinds of morphologies can be obtained for the nascent polymer (e.g., cracks and folded chain). Experimental data also indicate that the growth of the polymer chains occur at a non‐steady state during the very early stages of the polymerisation.

SEM image showing the morphology of a polymer/catalyst particle after 2 seconds of polymerisation at 8 bars of ethylene on an MgCl2‐supported Ziegler‐Natta catalyst.  相似文献   


8.
Recently considerable detail has become available on the initial morphology and the morphological changes that occur for silica based Cr catalysts for ethylene polymerization. These catalysts are produced as a dry powder and may be employed either in gas phase or in slurry processes. MgCl2-supported Ziegler-Natta polymerization catalysts are often prepared and employed as slurries. They usually are never dried and thus few studies have employed the spectra of physical techniques common to the characterization of pore structure. In the current study, we have carefully removed the solvent for both ball-milled and precipitated MgCl2-supported catalysts. These catalysts are characterized by physical sorption, mercury porosimetry, and electron microscopy both as prepared and during the initial stages of polymerization (to ~ 100 g of polymer/g of catalyst). We find that the initial catalyst may be represented by a complex agglomerate of small crystallites as contrasted with the branched pore network found in Cr/silica catalysts. As a result, it is concluded that the initial fragmentation of the MgCl2 based systems is more uniform as contrasted with the progressive fragmentation of the silica-based system. This fragmentation mechanism facilitates the retention of greater polymer/catalyst surface during the initial stages of the polymerization. © 1992 John Wiley & Sons, Inc.  相似文献   

9.
Nanostructured titanium dioxides were synthesized via various post-treatments of titanate nanofibers obtained from titanium precursors by hydrothermal reactions. The microstruc-tures of TiO2 and supported Ru/TiO2 catalysts were characterized with X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray analysis, and nitrogen adsorption isotherms. The phase structure, particle size, morphology, and specific surface area were de-termined. The supported Ru catalysts were applied for the selective methanation of CO in a hydrogen-rich stream. The results indicated that the Ru catalyst supported on rutile and TiO2-B exhibited higher catalytic performance than the counterpart supported on anatase, which suggested the distinct interaction between Ru nanoparticles and TiO2 resulting from different crystalline phases and morphology.  相似文献   

10.
Immobilization and activation of a broad range of titanium-, chromium-and nickel-based single-site catalysts for ethylene polymerization has been carried out using supports of type MgCl2/AlRn(OEt)3 − n , prepared by reaction of AlR3 with adducts of magnesium chloride and ethanol. The spherical particle morphology of the support is retained and replicated during catalyst immobilization and polymerization, yielding polyethylenes with controlled particle size and morphology. The single-site nature of these catalysts is also retained, giving polymers with narrow molecular weight distribution. Furthermore, very high catalyst activities can be obtained as a result of a stabilizing effect of the support, which prevents the rapid decay in activity often observed in homogeneous polymerization with these catalysts. The text was submitted by the authors in English.  相似文献   

11.
Porous organic polymer has recently attracted tremendous interest because of its potential to combine the best features of homogeneous and heterogeneous catalysts. In this study, copper supported on phenanthroline-functionalized porous polymer (Cu@PCP-Phen) was prepared by a co-polymerization method and used as a heterogeneous catalyst for dimethyl carbonate synthesis via the oxidative carbonylation of methanol. The catalyst was characterized by N2 adsorption, scanning electron microscopy, transmission electron microscopy, 13C solid-state nuclear magnetic resonance, and X-ray photoelectron spectroscopy, which suggested that it possessed a big surface area, hierarchical porous structure, and strong electron-donating effect toward copper species. The Cu@PCP-Phen catalyst showed high catalytic activity, which was significantly higher than those achieved with Cu-based catalysts under similar reaction conditions. In addition, the catalyst can be easily separated and reused at least six times with only a slight decrease in activity. The salient features of this protocol are the simplicity in handling of the catalyst, high catalytic activity, excellent selectivity, low copper leaching, and good catalyst recyclability.  相似文献   

12.
Aluminas thermally and/or chemically treated were used as support for Cp2ZrCl2 and evaluated in ethylene polymerization at constant reaction conditions. Two different calcination temperatures were employed, and the metallocene was fixed either directly or after support pretreatment with MAO, TMA, or NaOH solutions. The obtained alumina‐supported catalysts showed activities comparable to the homogeneous precursor. It was noticed that the textural properties of the supports strongly influenced the catalyst performance. The direct fixation of the metallocene on alumina produced catalysts presenting lower activities in comparison to the ones obtained from the chemically treated supports. The chemical pretreatment of hydrated alumina with TMA originated catalysts whose activities were superior to those obtained by pretreatment with MAO. The pretreatment with NaOH produced the more active catalyst and generated branched polymer. The molecular weight of the PE produced by the supported catalysts was higher than the ones obtained with the homogeneous system. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 9–21, 2004  相似文献   

13.
The K‐V‐alkaline‐earth metal catalysts supported on α‐alumina ceramic substrate have been prepared. The morphology of the soot particulates deposited on prepared catalysts supported on α‐alumina ceramic substrate was described by scanning electron microscopy (SEM). The XRD was used to characterize the catalysts and their catalytic activities were evaluated by soot oxidation reaction using the TPR system. The SEM photographs presented that soot particles have a particle size of about 100 nm in diameter forming a loose contact with catalyst, which is resemble to the real situation for the catalyst application. The XRD and TPR study showed that the catalytic activities of the catalysts were improved through the cooperation of KNO3 and some alkaline earth metal compounds. The soot onset ignition temperature at 310°C is the lowest by the cooperation of the crystalline phases KNO3, KCaVO4, and Ca3(VO4)2 for the K‐V‐Ca catalyst with a molar ratio of 6:1:1. In addition, the catalyst containing higher KNO3 content has an adsorption for CO2. The all prepared K‐V‐Ba catalysts can adsorb more CO2 at room temperature.  相似文献   

14.
Heterogeneous polyolefin catalysts based on metallocenium salts of weakly coordinating anions can be prepared via a series of simple reactions from lightly crosslinked chloromethylated polystyrene beads. Catalytic sites are distributed homogeneously throughout the polystyrene particles. The nonporous nature of these catalysts affords a high degree of control over the olefin uptake rate, avoiding problems of premature catalyst fragmentation that often plague high‐surface‐area heterogeneous catalysts based on highly reactive species. The choice of amine as the means of binding or templating allows catalysts based on a wide variety of metallocenes to be readily prepared by the same synthetic approach. The dative interactions between the metallocene cation and the amine functionality of the support material are sufficient to prevent extraction under polymerization conditions to yield excellent particle morphology of the polyolefin product, but they are not so strong as to affect the nature of the polyolefin produced. The polymer‐supported catalysts have been used effectively for the polymerization of ethylene and polypropylene. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2979–2992, 2000  相似文献   

15.
The copolymerization of propylene with 1‐hexene, 1‐octene, 1‐decene, and 1‐dodecene was carried out with silica‐supported rac‐Me2Si(Ind)2ZrCl2 as a catalyst. The copolymerization activities of the homogeneous and supported catalysts and the microstructures of the resulting copolymers were compared. The activity of the supported catalyst was only one‐half to one‐eighth of that of the homogeneous catalyst, depending on the comonomer type. The supported catalyst copolymerized more comonomer into the polymer chain than the homogeneous catalyst at the same monomer feed ratio. Data of reactivity ratios showed that the depression in the activity of propylene instead of an enhancement in the activity of olefinic comonomer was responsible for this phenomenon. We also found that copolymerization with α‐olefins and supporting the metallocene on a carrier improved the stereoregularity and regioregularity of the copolymers. The melting temperature of all the copolymers decreased linearly with growing comonomer content, regardless of the comonomer type and catalyst system. Low mobility of the propagation chain in the supported catalyst was suggested as the reason for the different polymerization behaviors of the supported catalyst with the homogeneous system. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3294–3303, 2001  相似文献   

16.
Unbridged bis-substituted-indenyl zirconocene complexes, [(2,4-Me2Ind)2ZrCl2, Met-1; (2,4,6-Me3Ind)2ZrCl2, Met-2], were supported on silica and montmorillonite carriers (resulting in silica-supported catalysts MS-1 and MS-2, and montmorillonite-supported catalyst MT-1). Ethylene polymerization by homogeneous and heterogeneous catalysts showed high activity, affording polyethylenes with high molecular weight. The catalytic activity and the molecular weight of the polymer were improved using the heterogeneous systems. The activities for the ethylene/1-hexene copolymerization by heterogeneous systems were lower than those using homogeneous systems, however, the comonomer was incorporated efficiently into polymer in both the homo- and the heterogeneous systems, and moreover, the microstructure of the copolymer derived from the heterogeneous catalysts showed different characteristics from those resulting from the homogeneous systems. The rErH values of the heterogeneous catalysts (1.82 for MS-1 and 0.70 for MS-2), are quite different from those of their homogeneous analogues (1.25 for Met-1 and 1.26 for Met-2).  相似文献   

17.
制备了纳米碳材料负载铂的催化剂,通过N2吸附、TEM、XRD技术分别对载体的BET比表面积和催化剂结构、形貌和粒径大小进行了表征。考察了不同催化剂在环己烷脱氢反应中的催化性能以及温度对纳米碳颗粒负载铂催化剂活性的影响。结果表明,锚定在不同碳载体上的铂有较好的分散性,粒径较小,粒度分布范围较窄并且具有相同的晶型结构。孔状纳米碳颗粒负载铂催化剂的活性高于碳纳米管和高比表面的活性炭负载铂催化剂,并且在低温条件下已经显示了较高的活性,尤其是中空碳颗粒负载铂催化剂在环己烷脱氢反应中显示了好的活性和稳定性。  相似文献   

18.
新型聚合物载体茂金属催化剂   总被引:4,自引:0,他引:4  
均相茂金属催化剂虽然有许多优点和特点,但也存在着某些不足之处,例如,不适于现在通用的气相和淤浆聚合工艺;要想达到足够的聚合活性需大量价格昂贵的MAO;相当多的均相茂金属催化剂不适于高温聚合(活性降低,分子极低),不能很好地控制聚合物的形态,为了在工业上得到实际应用,必须将它们载体(非均相)化。通常采用的载体都是无机物,如SiO2、MgCl2、Al2O3等。由于无机载体表面具有酸性,负载茂金属催化剂活性有所降低,用聚合和作茂金属催化剂的载体很少有报道,我们研制了一种新型的聚合物载体茂金属催化剂,即可保持均相茂金属催化特点和优点,又能克服其缺点。其合成路线如下。  相似文献   

19.
Pt-Ru binary catalysts were prepared on a polyaniline-functionalized multiwalled carbon nanotube (PANi/MWCNT). PANi/MWCNT composites were synthesized by the polymerization of aniline in the presence of a carbon nanotube suspension using FeSO(4) and (NH(4))(2)S(2)O(8) as the oxidants. The Pt-Ru/PANi/MWCNT catalysts were formed by the chemical reduction of H(2)PtCl(6) and RuCl(3) using NaBH(4) as the reducing agent. The binary component catalyst is sharply distributed, with particle sizes ranging from 2.0 to 4.0 nm, and the Pt and Ru distributions are homogeneous when supported on PANi/MWCNT. In comparison, the binary catalyst supported on bare MWCNT displayed a Pt-rich core and a Ru-rich shell nanostructure. The surface composition deduced from CO stripping potentials confirms that the Ru surface content (χ(Ru)) is approximately 50% for the Pt-Ru alloy on PANi/MWCNT, and the catalyst on bare MWCNT shows nearly 70% Ru on the surface. Pt-Ru binary catalysts supported on PANi/MWCNT have higher activity, a higher Pt utilization efficiency, and much better durability when compared to other catalyst supports on bare MWCNT or on Vulcan XC-72.  相似文献   

20.
The binary silica supported catalyst system comprising the Cp2ZrCl2 and SiMe2(Ind)2ZrCl2 metallocene compounds was prepared with different immobilization methods and evaluated at different propylene polymerization conditions. The performance results of the homogeneous isolated catalysts and also the homogeneous catalyst mixture were also included for comparison. High activities were obtained with the supported systems and the molecular weight of the produced polypropylene was invariably higher than that obtained using the homogeneous precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号