首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
白旭芳  迟锋  郑军  李亦楠 《中国物理 B》2012,21(7):77301-077301
We propose to generate and reverse the spin accumulation in a quantum dot (QD) by using the temperature difference between the two ferromagnetic leads connected to the dot. The electrons are driven purely by the temperature gradient in the absence of an electric bias and a magnetic field. In the Coulomb blockade regime, we find two ways to reverse the spin accumulation. One is by adjusting the QD energy level with a fixed temperature gradient, and the other is by reversing the temperature gradient direction for a fixed value of the dot level. The spin accumulation in the QD can be enhanced by the magnitudes of both the leads’ spin polarization and the asymmetry of the dot-lead coupling strengths. The present device is quite simple, and the obtained results may have practical usage in spintronics or quantum information processing.  相似文献   

2.
We study the spin-polarized current through a vertical double quantum dot scheme. Both the Rashba spin–orbit (RSO) interaction inside one of the quantum dots and the strong intradot Coulomb interactions on the two dots are taken into account by using the second-quantized form of the Hamiltonian. Due to the existence of the RSO interaction, spin-up and spin-down electrons couple to the external leads with different strengths, and then a spin polarized current can be driven out of the middle lead by controlling a set of structure parameters and the external bias voltage. Moreover, by properly adjusting the dot levels and the external bias voltages, a pure spin current with no accompanying charge current can be generated in the weak coupling regime. We show that the difference between the intradot Coulomb interactions strongly influences the spin-polarized currents flowing through the middle lead and is undesirable in the generation of the net spin current. Based on the RSO interaction, the structure we propose can efficiently polarize the electron spin without the usage of any magnetic field or ferromagnetic material. This device can be used as a spin-battery and is realizable using the present available technologies.  相似文献   

3.
Linear and nonlinear transport through a quantum dot that is weakly coupled to ideal quantum leads is investigated in the parameter regime where charging and geometrical quantization effects coexist. The exact eigenstates and spins of a finite number of correlated electrons confined within the dot are combined with a rate equation. The current is calculated in the regime of sequential tunneling. The analytic solution for an Anderson impurity is given. The phenomenological charging model is compared with the quantum mechanical model for interacting electrons. The current-voltage characteristics show Coulomb blockade. The excited states lead to additional fine-structure in the current voltage characteristics. Asymmetry in the coupling between the quantum dot and the leads causes asymmetry in the conductance peaks which is reversed with the bias voltage. The spin selection rules can cause a ‘spin blockade’ which decreases the current when certain excited states become involved in the transport. In two-dimensional dots, peaks in the linear conductance can be suppressed at low temperatures, when the total spins of the corresponding ground states differ by more than 1/2. In a magnetic field, an electron number parity effect due to the different spins of the many-electron ground states is predicted in addition to the vanishing of the spin blockade effect. All of the predicted features are consistent with recent experiments.  相似文献   

4.
Spin and charge transport through a quantum dot coupled to external nonmagnetic leads is analyzed theoretically in terms of the non-equilibrium Green function formalism based on the equation of motion method. The dot is assumed to be subject to spin and charge bias, and the considerations are focused on the Kondo effect in spin and charge transport. It is shown that the differential spin conductance as a function of spin bias reveals a typical zero-bias Kondo anomaly which becomes split when either magnetic field or charge bias are applied. Significantly different behavior is found for mixed charge/spin conductance. The influence of electron-phonon coupling in the dot on tunneling current as well as on both spin and charge conductance is also analyzed.  相似文献   

5.
We study the spin polarized currents generation in a magnetic (ferromagnetic/ferromagnetic) tunnel junction by means of adiabatic quantum pumping. Using a scattering matrix approach, it is shown that a pure spin current can be pumped from one ferromagnetic lead into the adjacent one by adiabatic modulation of the magnetization and the height of the barrier at the interface in absence of external bias voltage. We numerically study the characteristic features of the pure spin current and discuss its behavior for realistic values of the parameters. We show that the generated pure spin current is robust with respect to the variation of the magnetization strength, a very important feature for a realistic device, and that the proposed device can operate close to the optimal pumping regime. An experimental realization of a pure spin current injector is also discussed.  相似文献   

6.
Non-linear charge and heat transport through a single-level quantum dot in the Coulomb blockade regime is investigated within the framework of non-equilibrium Green function formalism and power output and efficiency of the device are studied. It is found that maximum power as well as efficiency depends on the relative orientation of magnetic moments in electrodes and can vary with polarization factor p. In general, power output is suppressed in magnetic systems and decreases with polarization. The highest efficiency can be attained in antiparallel configuration, and moreover, it does not depend on p. Spin power as well as spin efficiency of the system is introduced and discussed. It is also shown that in the Coulomb blockade regime the (spin) efficiency of the device operating under maximum power conditions varies with temperature bias in a non-monotonic way and shows a flat maximum for low ΔT.  相似文献   

7.
The rectification of spin current driven by a temperature difference in a simple model consisting of a quantum dot connected to two ferromagnetic leads has been studied using the rate equation technique. In addition to the dot level, the magnitude of thermospin current rectification depends on the temperature bias across the system, the asymmetry parameter and the Coulomb charging energy, where the last two parameters are necessary conditions for rectification to occur in the system. The thermospin current rectification becomes analytically simplified at the limitation condition of asymmetry. With an applied Zeeman magnetic field, an ideal 100%100% rectification of thermospin current can be obtained at specific dot energies, which can be controlled by an external gate voltage.  相似文献   

8.
We study a spin structure that arises in a one‐dimensional quantum dot with zero total spin under the action of a charged tip of a scanning probe microscope in the presence of a weak magnetic field. The evolution of spin structure with changing the probe position is traced to show that the movable probe can be an effective tool to manipulate the spin. The spin structures are formed when the probe is located in certain regions along the dot due to Coulomb interaction of electrons as they are redistributed between the two sections in which the quantum dot is divided by the potential barrier created by the probe. There are two main states: spin‐polarized and non‐polarized ones. The transition between them is accompanied by a spin precession governed by the Rashba spin–orbit interaction induced by the electric field of the probe. In the transition region the spin density changes strongly while charge distribution remains nearly unchanged. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

9.
徐卫平  张玉颖  王强  聂一行 《中国物理 B》2016,25(11):117307-117307
We have studied spin-dependent thermoelectric transport through parallel triple quantum dots with Rashba spinorbital interaction(RSOI) embedded in an Aharonov-Bohm interferometer connected symmetrically to leads using nonequilibrium Green's function method in the linear response regime.Under the appropriate configuration of magnetic flux phase and RSOI phase,the spin figure of merit can be enhanced and is even larger than the charge figure of merit.In particular,the charge and spin thermopowers as functions of both the magnetic flux phase and the RSOI phase present quadruple-peak structures in the contour graphs.For some specific configuration of the two phases,the device can provide a mechanism that converts heat into a spin voltage when the charge thermopower vanishes while the spin thermopower is not zero,which is useful in realizing the thermal spin battery and inducing a pure spin current in the device.  相似文献   

10.
We exploit the pumped spin-current and current noise spectra under equilibrium conditions in a single quantum dot connected to two normal leads as an electrical scheme for detection of the electron spin resonance (ESR) and decoherence. We propose spin-resolved quantum rate equations with correlation functions in Laplace space for the analytical derivation of the zero-frequency auto- and cross-shot noise spectra of charge and spin current. Our results show that in the strong Coulomb blockade regime, ESR-induced spin flip generates a finite spin current and quantum partition noises in the absence of net charge transport. Moreover, spin shot noise is closely related to the magnetic Rabi frequency and decoherence and would be a sensitive tool to measure them.  相似文献   

11.
He Gao  Hong-Kang Zhao 《Physics letters. A》2013,377(16-17):1210-1214
The Fano and Kondo cooperated resonant tunneling through a quantum dot interferometer under the perturbation of a rotating magnetic field is investigated theoretically. The spin-polarized current components have been derived generally by employing the Keldysh nonequilibrium Green?s function method, through which the charge and spin currents are determined directly. The numerical calculations on spin and charge currents are performed to show the compound features of mesoscopic transport associated with the Kondo, Fano, and Zeeman effects intimately. The induced spin current in the Kondo regime is much different from the one in the non-interacting regime. The spin current is tuned from resonant peak to valley by varying external parameters.  相似文献   

12.
We report a study of spin-dependent transport through a quantum dot irradiated by continuous circularly polarized light resonant to the electron-heavy hole transition. We use the nonequilibrium Green's function to calculate the spin accumulation, spin-resolved currents, and current polarization in the presence of an external bias and intradot Coulomb interaction. It is found that for a range of external biases sign reversal of the current polarization can be modulated. The system thus operates as a rectifier for spin current polarization. This effect follows from the interplay between the external irradiation and the Coulomb repulsion. The spin-polarized transport through a three-terminal device is also discussed. Spin current with high polarization could be obtained due to spin filter effect.  相似文献   

13.
贺泽龙  白继元  李鹏  吕天全 《物理学报》2014,63(22):227304-227304
利用非平衡格林函数方法, 理论研究T型双量子点分子Aharonov-Bohm (A-B)干涉仪的电荷及其自旋输运性质. 通过控制T型双量子点分子内量子点间有无耦合, 能够实现在同一电子能级位置处分别出现共振和反共振状态, 根据此性质, 能将体系设计成量子开关器件. 当将两个完全相同的T型双量子点分子分别嵌入A-B干涉仪两臂中时, 磁通取适当数值, 能够出现完全的量子相消干涉. 通过调节量子点能级、左右两电极间的偏压和Rashba自旋轨道相互作用强度, 可对体系自旋流进行调控. 关键词: 非平衡格林函数 T型双量子点分子 Aharonov-Bohm干涉仪 自旋输运  相似文献   

14.
张平  薛其坤  谢心澄 《物理》2004,33(4):238-241
从理论上研究了相互作用量子点在外部旋转磁场下的非平衡自旋输运性质,研究结果表明,量子点中的相干自旋振荡可以导致自旋电流的产生,当计入库仑关联相互作用后,近藤共振效应受外部进动磁场的影响很强,特别是当磁场的进动频率与塞曼能移满足共振条件时,每个自旋近藤峰就会劈裂为两个自旋共振峰的叠加,在低温强耦合区,这种近藤型共隧穿过程对自旋电流带来重要贡献。  相似文献   

15.
Within the weak-coupling regime the spin current through a quantum dot system is calculated using a quantum master equation approach which includes a sum over Matsubara terms. To be able to efficiently calculate, also at low temperatures, the time evolution of the reduced density matrix a high-temperature approximation was derived which proves to be rather accurate in comparison to the exact results. In the present model it is assumed that the energy levels of the dot are split by a constant magnetic field. An additional external (laser) field is used to control the currents of the two spin polarizations. This is either done using the phenomenon of coherent destruction of tunneling or optimal control theory. Scenarios are studied in which the spin current is reversed while the charge current is kept constant.  相似文献   

16.
In this paper we investigate adiabatic charge and spin pumping through interacting quantum dots using non-equilibrium Green's function techniques and the equation-of-motion method. We treat the electronic correlations inside the dot using a Hartree-Fock approximation and succeed in obtaining closed analytic expressions for the Keldysh Green's functions. These allow us to compute charge and spin currents through the quantum dot. Depending on the parameters of the quantum dot and its coupling to the reservoirs, we show that it can be found in two different regimes: the magnetic regime and the non-magnetic regime. In the magnetic regime we find a non-vanishing spin current in addition to the charge current present in both cases.  相似文献   

17.
We theoretically study the spin transport through a two-terminal quantum dot device under the influence of a symmetric spin bias and circularly polarized light.It is found that the combination of the circularly polarized light and the applied spin bias can result in a net charge current.The resultant charge current is large enough to be measured when properly choosing the system parameters.The resultant charge current can be used to deduce the spin bias due to the fact that there exists a simple linear relation between them.When the external circuit is open,a charge bias instead of a charge current can be induced,which is also measurable by present technologies.These findings indicate a new approach to detect the spin bias by using circularly polarized light.  相似文献   

18.
We find that Kondo resonant conductance can occur in a quantum dot in the Coulomb blockade regime with an even number of electrons N. The contacts are attached to the dot in a pillar configuration, and a magnetic field B( perpendicular) along the axis is applied. B( perpendicular) lifts the spin degeneracy of the dot energies. Usually, this prevents the system from developing the Kondo effect. Tuning B( perpendicular) to the value B(*) where levels with different total spin cross restores both the degeneracy and the Kondo effect. We analyze a dot charged with N = 2 electrons. Coupling to the contacts is antiferromagnetic due to a spin selection rule and, in the Kondo state, the charge is unchanged while the total spin on the dot is S = 1/2.  相似文献   

19.
We propose a Rashba three-terminal double-quantum-dot device to generate a spin-polarized current and manipulate the electron spin in each quantum dot by utilizing the temperature gradient instead of the electric bias voltage. This device possesses a nonresonant tunneling channel and two resonant tunneling channels. The Keldysh nonequilibrium Green's function techniques are employed to determinate the spin-polarized current flowing from the electrodes and the spin accumulation in each quantum dot. We find that their signs and magnitudes are well controllable by the gate voltage or the temperature gradient. This result is attributed to the change in the slope of the transmission probability at the Fermi levels in the low-temperature region. Importantly, an obviously pure spin current can be injected into or extracted from one of the three electrodes by properly choosing the temperature gradient and the gate voltages. Therefore, the device can be used as an ideal thermal generator to produce a pure spin current and manipulate the electron spin in the quantum dot.  相似文献   

20.
郑军  李春雷  杨曦  郭永 《物理学报》2017,66(9):97302-097302
基于非平衡态格林函数方法,理论研究了与四个电极耦合的双量子点系统中的自旋和电荷能斯特效应,考虑了不同电极的磁动量结构和量子点内以及量子点间电子的库仑相互作用对热电效应的影响.结果表明铁磁端口中的磁化方向能够有效地调节能斯特效应:当电极1和电极3中的磁化方向反平行排列时,通过施加横向的温度梯度,系统中将会出现纯的自旋能斯特效应;当电极4从普通金属端口转变为铁磁金属端口时,将同时观测到电荷和自旋能斯特效应.研究发现,能斯特效应对于铁磁电极极化强度的依赖程度较弱,但对库仑排斥作用十分敏感.在量子点内和点间库仑排斥作用的影响下,自旋及电荷能斯特系数有望提高两个数量级.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号