首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper,we discuss the P-v criticality and the heat engine efficiency in the Bardeen EinsteinGauss-Bonnet (EGB) AdS black hole space-time.From the P-v plane in the extended phase space,we find that the Bardeen EGB-AdS black hole conforms to Van der Waals (VdW) liquid-gas systems in the extended phase space,and P_cv_/T_c=0.369 of the Bardeen EGB-AdS black hole system is between 0.3333 of the Gauss-Bonnet AdS black hole system and 0.375 of the VdW gas system in the 5-dimensions.Then we construct a heat engine by taking the Bardeen EGB-AdS black hole as the working substance,and consider a rectangle heat cycle in the P-v plane.We find that two cases with different Bardeen parameter e and Gauss-Bonnet parameter a both have the same situation,i.e.as the entropy difference between small black hole and large black hole S2 increases,the heat engine efficiency will increase.Furthermore,as the Bardeen parameter e increases,the efficiency will decrease.However,for the Gauss-Bonnet parameter a,the result is contrary.By comparing with the well-know Carnot heat engine efficiency,we have found the efficiency ratioη/η_c versus entropy S_2 is bounded below l,so it is coincided with the thermodynamical second law.  相似文献   

2.
Treating the black hole molecules as working substance and considering its phase structure, we study the black hole heat engine by a charged anti-de Sitter black hole. In the reduced temperature-entropy chart, it is found that the work, heat, and efficiency of the engine are free of the black hole charge. Applying the Rankine cycle with or without a back pressure mechanism to the black hole heat engine, the compact formula for the efficiency is obtained. And the heat, work and efficiency are worked out. The result shows that the black hole engine working along the Rankine cycle with a back pressure mechanism has a higher efficiency. This provides a novel and efficient mechanism to produce the useful mechanical work, and such black hole heat engine may act as a possible energy source for the high energy astrophysical phenomena near the black hole.  相似文献   

3.
This study aims to analyze the extended thermodynamical properties of the charged black hole in Horndeski theory with the k-essence sector. Herein, we define a holographic heat engine using the anti de Sitter black hole. We then estimate the engine efficiency in high-temperature limit and compare the result with the exact result. With the given specified parameters in a rectangular engine, high order coupling suppresses the engine efficiency.  相似文献   

4.
We investigate the thermodynamical properties of charged torus-like black holes and take it as the working substance to study the heat engines. In the extended phase space, by interpreting the cosmological constant as the thermodynamic pressure, we derive the thermodynamical quantities by the first law of black hole thermodynamics and obtain the equation of state. Then, we calculate the efficiency of the heat engine in the Carnot cycle as well as the rectangular cycle,and investigate how the efficiency changes with respect to volume. In addition, to avoid a negative temperature, we emphasize that the charge of this black hole cannot be arbitrary. Last,we check the calculation accuracy of a benchmark scheme and discuss the upper bound and lower bound for charged torus-like black hole in the scheme.  相似文献   

5.
In this paper, we study the heat engine where a charged AdS black hole surrounded by dark energy is the working substance and the mechanical work is done via the PdV term in the first law of black hole thermodynamics in the extended phase space. We first investigate the effects of a kind of dark energy (quintessence field in this paper) on the efficiency of the RN-AdS black holes as the heat engine defined as a rectangular closed path in the PV plane. We get the exact efficiency formula and find that the quintessence field can improve the heat engine efficiency, which will increase as the field density \(\rho _q\) grows. At some fixed parameters, we find that a larger volume difference between the smaller black holes(\(V_1\)) and the bigger black holes(\(V_2\) ) will lead to a lower efficiency, while the bigger pressure difference \(P_1-P_4\) will make the efficiency higher, but it is always smaller than 1 and will never be beyond the Carnot efficiency, which is the maximum value of the efficiency constrained by thermodynamics laws; this is consistent to the heat engine in traditional thermodynamics. After making some special choices for the thermodynamical quantities, we find that the increase of the electric charge Q and the normalization factor a can also promote the heat engine efficiency, which would infinitely approach the Carnot limit when Q or a goes to infinity.  相似文献   

6.
In this paper, we consider a charged rotating black hole in three dimensions with a scalar charge, and discuss thermodynamics quantities. We find effects of the black hole parameters on the temperature, entropy, free energy, total energy and specific heat. We also investigate the stability of the black hole and study phase transition. We consider the first law of thermodynamics and find that satisfied.  相似文献   

7.
We study the charged black hole of hyperbolic horizon with scalar hair (charged Martinez-Troncoso-Zanelli: CMTZ black hole) as a model of analytic hairy black hole for holographic superconductor. For this purpose, we investigate the second order phase transition between CMTZ and hyperbolic Reissner-Nordström-AdS (HRNAdS) black holes. However, this transition unlikely occurs. As an analytic treatment for holographic superconductor, we develop superconductor in the bulk and superfluidity on the boundary using the CMTZ black hole below the critical temperature. The presence of charge destroys the condensates around the zero temperature, which is in accord with the thermodynamic analysis of the CMTZ black hole.  相似文献   

8.
甘俏姗  陈菊华  王永久 《中国物理 B》2016,25(12):120401-120401
In this paper we investigate the phase transition and geometrothermodynamics of regular electrically charged black hole in nonlinear electrodynamics theory coupled to general relativity. We analyze the types of phase transition of the thermodynamic system by calculating its temperature, heat capacity, and free energy, etc. We find that there are secondorder phase transitions from the heat capacity for a large value of S. In addition, employing the geometrothermodynamics,we obtain a Legendre invariance metric and find the relationship between the thermodynamical phase transition and the singularity of the curvature scalar in the regular black hole with the nonlinear electrodynamics.  相似文献   

9.
Tidal charged spherically symmetric vacuum brane black holes are characterized by their mass m and tidal charge q, an imprint of the five-dimensional Weyl curvature. For q>0 they are formally identical to the Reissner–Nordström black hole of general relativity. We study the thermodynamics and thermodynamic geometries of tidal charged black holes and discuss similarities and differences as compared to the Reissner–Nordströ m black hole. As a similarity, we show that (for q>0) the heat capacity of the tidal charged black hole diverges on a set of measure zero of the parameter space, nevertheless both the regularity of the Ruppeiner metric and a Poincaré stability analysis show no phase transition at those points. The thermodynamic state spaces being different indicates that the underlying statistical models could be different. We find that the q<0 parameter range, which enhances the localization of gravity on the brane, is thermodynamically preferred. Finally we constrain for the first time the possible range of the tidal charge from the thermodynamic limit on gravitational radiation efficiency at black hole mergers.  相似文献   

10.
We analyze certain aspects of BTZ black holes in massive theory of gravity. The black hole solution is obtained by using the Vainshtein and dRGT mechanism, which is asymptotically AdS with an electric charge. We study the Hawking radiation using the tunneling formalism as well as analyze the black hole chemistry for such system. Subsequently, we use the thermodynamic pressure-volume diagram to explore the efficiency of the Carnot heat engine for this system. Some of the important features arising from our solution include the non-existence of quantum effects, critical Van der Walls behaviour, thermal fluctuations and instabilities. Moreover, our solution violates the Reverse Isoperimetric Inequality and, thus, the black hole is super-entropic, perhaps which turns out to be the most interesting characteristics of the BTZ black hole in massive gravity.  相似文献   

11.
In this work, we have studied accretion of the dark energies in new variable modified Chaplygin gas (NVMCG) and generalized cosmic Chaplygin gas (GCCG) models onto Schwarzschild and Kerr?CNewman black holes. We find the expression of the critical four velocity component which gradually decreases for the fluid flow towards the Schwarzschild as well as the Kerr?CNewman black hole. We also find the expression for the change of mass of the black hole in both cases. For the Kerr?CNewman black hole, which is rotating and charged, we calculate the specific angular momentum and total angular momentum. We showed that in both cases, due to accretion of dark energy, the mass of the black hole increases and angular momentum increases in the case of a Kerr?CNewman black hole.  相似文献   

12.
Considering the cosmological constant as the pressure, this study addresses the laws of thermodynamics and weak cosmic censorship conjecture in the Reissner-Nordstr?m-AdS black hole surrounded by quintessence dark energy under charged particle absorption. The first law of thermodynamics is found to be valid as a particle is absorbed by the black hole. The second law, however, is violated for the extremal and near-extremal black holes, because the entropy of these black hole decrease. Moreover, we find that the extremal black hole does not change its configuration in the extended phase space, implying that the weak cosmic censorship conjecture is valid. Remarkably, the near-extremal black hole can be overcharged beyond the extremal condition under charged particle absorption. Hence, the cosmic censorship conjecture could be violated for the near-extremal black hole in the extended phase space. For comparison, we also discuss the first law, second law, and the weak cosmic censorship conjecture in normal phase space, and find that all of them are valid in this case.  相似文献   

13.
The accretion process is being investigated onto some important black holes such as Born-Infeld-AdS black hole, non-linear charged black hole solution in AdS space-time and Einstein-Yang-Mills massive gravity in the presence of Born-Infeld nonlinear electrodynamics. We find out the relations of radial velocity, energy density and change of mass for mention black holes and analyze their behavior graphically for different values of equation of state parameters $\omega$. We also examine the relations for critical speed for these black holes. It is observed that for different state parameters different fluids exhibit different evolutions in black holes backgrounds. The energy density of some fluids is negative or positive near the black hole while other fluids become cause to increase or decrease in black hole mass.  相似文献   

14.
In this paper, we first obtain the higher-dimen-sional dilaton–Lifshitz black hole solutions in the presence of Born–Infeld (BI) electrodynamics. We find that there are two different solutions for the cases of \(z=n+1\) and \(z\ne n+1\) where z is the dynamical critical exponent and n is the number of spatial dimensions. Calculating the conserved and thermodynamical quantities, we show that the first law of thermodynamics is satisfied for both cases. Then we turn to the study of different phase transitions for our Lifshitz black holes. We start with the Hawking–Page phase transition and explore the effects of different parameters of our model on it for both linearly and BI charged cases. After that, we discuss the phase transitions inside the black holes. We present the improved Davies quantities and prove that the phase transition points shown by them are coincident with the Ruppeiner ones. We show that the zero temperature phase transitions are transitions in the radiance properties of black holes by using the Landau–Lifshitz theory of thermodynamic fluctuations. Next, we turn to the study of the Ruppeiner geometry (thermodynamic geometry) for our solutions. We investigate thermal stability, interaction type of possible black hole molecules and phase transitions of our solutions for linearly and BI charged cases separately. For the linearly charged case, we show that there are no phase transitions at finite temperature for the case \( z\ge 2\). For \(z<2\), it is found that the number of finite temperature phase transition points depends on the value of the black hole charge and there are not more than two. When we have two finite temperature phase transition points, there is no thermally stable black hole between these two points and we have discontinuous small/large black hole phase transitions. As expected, for small black holes, we observe finite magnitude for the Ruppeiner invariant, which shows the finite correlation between possible black hole molecules, while for large black holes, the correlation is very small. Finally, we study the Ruppeiner geometry and thermal stability of BI charged Lifshtiz black holes for different values of z. We observe that small black holes are thermally unstable in some situations. Also, the behavior of the correlation between possible black hole molecules for large black holes is the same as for the linearly charged case. In both the linearly and the BI charged cases, for some choices of the parameters, the black hole system behaves like a Van der Waals gas near the transition point.  相似文献   

15.
Based on the 4-dimensional black hole solution of $f(R)$ theory coupled to a nonlinear Maxwell field, we calculate the interior volume of a charged $f(R)$ black hole using the method proposed by Christodoulou and Rovelli. Considering massless scalar field in the interior volume and Hawking radiation carrying only energy, we calculate the entropy of the scalar field inside a charged $f(R)$ black hole and investigate the evolution of the entropy under Hawking radiation. In the meantime, the evolution of the Bekenstein-Hawking entropy under Hawking radiation has also been calculated. Based on these results, the proportional relation is obtained between the evolution of the scalar field entropy and the evolution of Bekenstein-Hawking entropy under Hawking radiation. According to the result, we investigate and discuss how the modified coefficient $b$ in $f(R)$ gravity theory affects the evolution relation between the two types of entropy. It is shown that the radiation rate for Hawking radiation of a charged $f(R)$ black hole can increase with the modified coefficient $b$.  相似文献   

16.
In this paper, we consider higher order corrections of the entropy, which coming from thermal fluctuations, and find their effect on the thermodynamics of higher dimensional charged black holes. Leading order thermal fluctuation is logarithmic term in the entropy while higher order correction is proportional to the inverse of original entropy. We calculate some thermodynamics quantities and obtain the effect of logarithmic and higher order corrections of entropy on them. Validity of the first law of thermodynamics investigated and Van der Waals equation of state of dual picture studied. We find that five-dimensional black hole behaves as Van der Waals, but higher dimensional case have not such behavior. We find that thermal fluctuations are important in stability of black hole hence affect unstable/stable black hole phase transition.  相似文献   

17.
In this paper we study thermodynamics, statistics and spectroscopic aspects of a charged black hole with a scalar hair coupled to the gravity in (2+1) dimensions. We obtained effects of the black hole charge and scalar field on the thermodynamical and statistical quantities. We find that scalar charge may increase entropy, temperature and probability, while may decrease black hole mass, free and internal energy. Also electric charge increases probability and decreases temperature and internal energy. Also we investigate stability of the system and find that the thermodynamical stability exists.  相似文献   

18.
We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstr?m-like solution of this model, which leads to an exact (t ? r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.  相似文献   

19.
We find solution to the metric function f(r) = 0 of charged BTZ black hole making use of the Lambert function. The condition of extremal charged BTZ black hole is determined by a non-linear relation of M e (Q) = Q 2(1 − ln Q 2). Then, we study the entropy of extremal charged BTZ black hole using the entropy function approach. It is shown that this formalism works with a proper normalization of charge Q for charged BTZ black hole because AdS2 × S1 represents near-horizon geometry of the extremal charged BTZ black hole. Finally, we introduce the Wald’s Noether formalism to reproduce the entropy of the extremal charged BTZ black hole without normalization when using the dilaton gravity approach.  相似文献   

20.
We study holographic superconductors in the Schwarzschild–AdS black hole with a global monopole through a charged complex scalar field. We calculate the condensates of the charged operators in the dual conformal field theories (CFTs) and discuss the effects of the global monopole on the condensation formation. Moreover, we compute the electric conductive using the probe approximation and find that the properties of the conductive are quite similar to those in the Schwarzschild–AdS black hole. These results can help us know more about holographic superconductors in the asymptotic AdS black holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号