首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shuxuan Ying 《中国物理C(英文版)》2020,44(12):125101-125101-9
Recently, the non-trivial solutions for 4-dimensional black holes of Einstein-Gauss-Bonnet gravity had been discovered. In this paper, considering a charged particle entering into a 4-dimensional Gauss-Bonnet-Maxwell black hole, we calculate the black hole thermodynamic properties using the Hamilton-Jacobi equation. In the normal phase space, the cosmological constant and Gauss-Bonnet parameter are fixed, the black hole satisfies the first and second laws of thermodynamics, and the weak cosmic censorship conjecture (WCCC) is valid. On the other hand, in the case of extended phase space, the cosmological constant and Gauss-Bonnet parameter are treated as thermodynamic variables. The black hole also satisfies the first law of thermodynamics. However, the increase or decrease in the black hole's entropy depends on some specific conditions. Finally, we observe that the WCCC is violated for the near-extremal black holes in the extended phase space.  相似文献   

2.
Considering the cosmological constant as the pressure, this study addresses the laws of thermodynamics and weak cosmic censorship conjecture in the Reissner-Nordstr?m-AdS black hole surrounded by quintessence dark energy under charged particle absorption. The first law of thermodynamics is found to be valid as a particle is absorbed by the black hole. The second law, however, is violated for the extremal and near-extremal black holes, because the entropy of these black hole decrease. Moreover, we find that the extremal black hole does not change its configuration in the extended phase space, implying that the weak cosmic censorship conjecture is valid. Remarkably, the near-extremal black hole can be overcharged beyond the extremal condition under charged particle absorption. Hence, the cosmic censorship conjecture could be violated for the near-extremal black hole in the extended phase space. For comparison, we also discuss the first law, second law, and the weak cosmic censorship conjecture in normal phase space, and find that all of them are valid in this case.  相似文献   

3.
Treating the cosmological constant as a dynamical variable, we investigate the thermodynamics and weak cosmic censorship conjecture(WCCC) of a charged Ad S black hole(BH) in the Rastall gravity. We determine the energy momentum relation of charged fermion at the horizon of the BH using the Dirac equation. Based on this relation, it is shown that the first law of thermodynamics still holds as a fermion is absorbed by the BH. However, the entropy of both the extremal and near-extremal BH decreases in the irreversible process, which means that the second law of thermodynamics is violated.Furthermore, we verify the validity of the WCCC by the minimum values of the metric function h(r) at its final state. For the extremal charged Ad S BH in the Rastall gravity, we find that the WCCC is always valid since the BH is extreme. While for the case of near-extremal BH, we find that the WCCC could be violable in the extended phase space(EPS), depending on the value of the parameters of the BH and their variations.  相似文献   

4.
The first law of black hole thermodynamics has been shown to be valid in the extended phase space.However,the second law and the weak cosmic censorship conjecture have not been investigated extensively.We investigate the laws of thermodynamics and the weak cosmic censorship conjecture of an AdS black hole with a global monopole in the extended phase space in the case of charged particle absorption.It is shown that the first law of thermodynamics is valid,while the second law is violated for the extremal and near-extremal black holes.Moreover,we find that the weak cosmic censorship conjecture is valid only for the extremal black hole,and that it can be violated for the near-extremal black holes,which is different from the previous results.  相似文献   

5.
As a charged fermion drops into a BTZ black hole, the laws of thermodynamics and the weak cosmic censorship conjecture are investigated in both the normal and extended phase space, where the cosmological parameter and renormalization length are regarded as extensive quantities. In the normal phase space, the first and second law of thermodynamics, and the weak cosmic censorship are found to be valid. In the extended phase space, although the first law and weak cosmic censorship conjecture remain valid, the second law is dependent on the variation of the renormalization energy d K. Moreover, in the extended phase space, the configurations of extremal and near-extremal black holes are not changed, as they are stable, while in the normal phase space, the extremal and near-extremal black holes evolve into non-extremal black holes.  相似文献   

6.
The weak cosmic censorship conjecture in the near-extremal BTZ black hole has been tested using test particles and fields.It has been claimed that such a black hole can be overspun.In this paper,we review the thermodynamics and weak cosmic censorship conjecture in BTZ black holes using the scattering of a scalar field.The first law of thermodynamics in the non-extremal BTZ black hole is recovered.For the extremal and near-extremal black holes,due to the divergence of the variation of entropy,we test the weak cosmic censorship conjecture by evaluating the minimum of the function f,and find that both the extremal and near-extremal black holes cannot be overspun.  相似文献   

7.

The thermodynamics and the weak cosmic censorship conjecture (WCCC) in a high dimensional RN ? AdSd+?1 black hole with energy-momentum relation are investigated by absorbing a charged particle in the phase space. In the RN ? AdSd+?1 space-time, the cosmological constant Λ is treated as a thermodynamic pressure and its conjugate quantity as a thermodynamic volume. We use the energy-momentum relation of the absorbed particle to discuss the thermodynamics of the RN ? AdSd+?1 black hole and to prove the WCCC in the phase space. Based on this assumption, we find that the first law and the second law of thermodynamics are satisfied in normal phase space. On the other hand, in the extend phase space, the first law is satisfied and the second law is violated. Then we study the WCCC in the phase space, we find that the WCCC is satisfied for an extreme black and a near-extreme black hole in the normal phase space. In the extend phase space, the WCCC is satisfied for an extreme black hole and unidentified for a near-extreme black hole.

  相似文献   

8.
In this paper, we employ the extended generalized uncertainty principle with linear terms (LEGUP) to investigate the thermodynamics properties of the Schwarzschild and Reissner–Nordström (RN) black holes. Firstly, by constructing the theoretical framework of LEGUP, the minimal temperature of the Schwarzschild black hole and the modified mass–temperature function for the black hole are calculated. Furthermore, the heat capacity function for the Schwarzschild black hole is obtained. After that, we compare LEGUP black hole thermodynamics with EGUP black hole and with the usual forms. Besides, the modification of black hole entropy is discussed, which involves a heuristic analysis of particles absorbed by the black hole. Finally, we derive the LEGUP-corrected temperature, heat capacity and entropy functions of the RN black hole.  相似文献   

9.
10.
In this study, we apply two methods to consider the variation of massive black holes in both normal and extended thermodynamic phase spaces. The first method considers a charged particle being absorbed by the black hole, whereas the second considers a shell of dust falling into it. With the former method, the first and second laws of thermodynamics are always satisfied in the normal phase space; however, in the extended phase space, the first law is satisfied but the validity of the second law?of?thermodynamics depends upon the model parameters. With the latter method, both laws are valid. We argue that the former method's violation of the second law of thermodynamics may be attributable to the assumption that the change of internal energy of the black hole is equal to the energy of the particle. Finally, we demonstrate that the event horizon always ensures the validity of weak cosmic censorship in both phase spaces; this means that the violation of the second law of thermodynamics, arising under the aforementioned assumption, does not affect the weak cosmic censorship conjecture. This further supports our argument that the assumption in the first method is responsible for the violation and requires deeper treatment.  相似文献   

11.
The near-horizon geometry of a large class of extremal and near-extremal black holes in string and M-theory contains three-dimensional asymptotically anti-de Sitter space. Motivated by this structure, we are led naturally to a discrete set of complex frequencies defined in terms of the monodromy at the inner and outer horizons of the black hole. We show that the correspondence principle, whereby the real part of these "nonquasinormal frequencies" is identified with certain fundamental quanta, leads directly to the correct quantum behavior of the near-horizon Virasoro algebra, and thus the black hole entropy. Remarkably, for the rotating black hole in five dimensions we also reproduce the fractionization of conformal weights predicted in string theory.  相似文献   

12.
In this study, we investigate the influence of the angular momentum of a charged particle around Kerr-Newman-Taub-NUT black holes on the Lyapunov exponent and find spatial regions where the chaos bound is violated. The exponent is obtained by solving the determination of the eigenvalues of a Jacobian matrix in the phase space. Equilibrium positions are obtained by fixing the charge-to-mass ratio of the particle and changing its angular momentum. For certain values of the black holes' electric charge, the NUT charge and rotational parameter, a small angular momentum of the particle, even with zero angular momentum, causes violation of the bound. This violation disappears at a certain distance from the event horizon of the non-extremal Kerr-Newman-Taub-NUT black hole when the angular momentum increases to a certain value. When the black hole is extremal, the violation always exists no matter how the angular momentum changes. The ranges of the angular momentum and spatial regions for the violation are found. The black holes and particle rotating in the same and opposite directions are discussed.  相似文献   

13.
周史薇  刘文彪 《物理学报》2007,56(11):6767-6771
以Gibbons-Maeda dilaton黑洞和Garfinkle-Horowitz-Strominger dilaton黑洞为例,研究空间的非对易性对黑洞热力学性质的影响.通过对比对易时空中Gibbons-Maeda dilaton黑洞和非对易时空中Garfinkle-Horowitz-Strominger dilaton黑洞的温度,得出如下结论:从对黑洞热力学性质产生影响这一角度来说,时空的非对易性和黑洞的荷(电荷或磁荷)有相似的作用.  相似文献   

14.
We present and contrast two distinct ways of including extremal black holes in a Lorentzian Hamiltonian quantization of spherically symmetric Einstein-Maxwell theory. First, we formulate the classical Hamiltonian dynamics with boundary conditions appropriate for extremal black holes only. The Hamiltonian contains no surface term at the internal infinity, for reasons related to the vanishing of the extremal hole surface gravity, and quantization yields a vanishing black hole entropy. Second, we give a Hamiltonian quantization that incorporates extremal black holes as a limiting case of nonextremal ones, and examine the classical limit in terms of wave packets. The spreading of the packets, even the ones centered about extremal black holes, is consistent with continuity of the entropy in the extremal limit, and thus with the Bekenstein-Hawking entropy even for the extremal holes. The discussion takes place throughout within Lorentz-signature spacetimes.  相似文献   

15.
Bogeun Gwak 《中国物理C(英文版)》2020,44(12):125106-125106-8
We investigated the tendency in the variations of CFT2 when a rotating AdS3 black hole changes because of the fluxes transferred by the scattering of a massive scalar field according to the anti-de Sitter (AdS)/conformal field theory (CFT) correspondence. The conserved quantities of the black hole are definitely constrained by the extremal condition. Moreover, the laws of thermodynamics provide a direction for the changes in the conserved quantities. Therefore, the black hole cannot be extremal under the scattering; this is naturally preferred. According to the relationship between the rotating AdS3 black hole and dual CFT2, we find that such changes in the black hole constrain the variations in the eigenstates of dual CFT2. Furthermore, the tendency in the variations is closely related to the laws of thermodynamics.  相似文献   

16.
In this paper, we study the thermodynamics and the weak cosmic censorship conjecture of the nonlinear electrodynamics black hole under the scattering of a charged complex scalar field.According to the energy and charge fluxes of the scalar field, the variations of this black hole's energy and charge can be calculated during an infinitesimal time interval. With scalar field scattering, the variation of the black hole is calculated in the extended and normal phase spaces.In the normal phase space, the cosmological constant and the normalization parameter are fixed,and the first and second laws of thermodynamics can also be satisfied. In the extended phase space, the cosmological constant and the normalization parameter are considered as thermodynamic variables, and the first law of thermodynamics is valid, but the second law of thermodynamics is not valid. Furthermore, the weak cosmic censorship conjecture is both valid in the extended and normal phase spaces.  相似文献   

17.
In this study, we investigate the phase transitions of the RN-AdS black hole at its Davies points according to the generalized Ehrenfest classification of phase transition established based on fractional derivatives. Notably, Davies points label the positions at which the heat capacity diverges. According to the usual Ehrenfest classification, second-order phase transitions occur at these points. For the RN-AdS black hole, the Davies points can be classified into two types. The first type corresponds to extreme values of the temperature, and the second type corresponds to the infection point (namely the critical point) of temperature. Employing the generalized Ehrenfest classification, we determine that the orders of phase transition at the two types of Davies points are different, that is, we note an order of 3/2 for the first type and 4/3 for the second type. Thus, this finer-grained classification can discriminate between phase transitions that are expected to lie in the same category, providing new insights leading toward a better understanding of black hole thermodynamics.  相似文献   

18.
We give a brief review on the formation and the calculation of black hole shadows. Firstly, we introduce the concept of a black hole shadow and the current works on a variety of black hole shadows. Secondly, we present the main methods of calculating photon sphere radius and shadow radius, and then explain how the photon sphere affects the boundary of black hole shadows. We review the analytical calculation for black hole shadows which have analytic expressions for shadow boundary due to the integrable photon motion system. And we introduce the fundamental photon orbits which can explain the patterns of black hole shadow shape. Finally, we review the numerical calculation of black hole shadows with the backward ray-tracing method and introduce some chaotic black hole shadows with self-similar fractal structures. Since the gravitational waves from the merger of binary black holes have been detected, we introduce a couple of shadows of binary black holes, which all have eyebrowlike shadows around the main shadows with the fractal structures. We discuss the invariant phase space structures of the photon motion system in black hole space-time, and explain the formation of black hole shadow is dominated by the invariant manifolds of certain Lyapunov orbits near the fixed points.  相似文献   

19.
Since black holes radiate with a thermal spectrum and therefore possess a radiation pressure, Boltzmann's derivation of Stefan's Law can be applied to black holes. In order that the entropy be proportional to the surface area of the black hole, the pressure must be negative. If the second law is not to be violated, then the temperature must also be negative. This leads to a canonical formulation for fluctuations. A comparison with other approaches is given and doubts are raised concerning the validity of conventional black hole thermodynamics.  相似文献   

20.
The thermodynamics of black holes is reformulated within the context of the recently developed formalism of geometrothermodynamics. This reformulation is shown to be invariant with respect to Legendre transformations, and to allow several equivalent representations. Legendre invariance allows us to explain a series of contradictory results known in the literature from the use of Weinhold’s and Ruppeiner’s thermodynamic metrics for black holes. For the Reissner–Nordström black hole the geometry of the space of equilibrium states is curved, showing a non trivial thermodynamic interaction, and the curvature contains information about critical points and phase transitions. On the contrary, for the Kerr black hole the geometry is flat and does not explain its phase transition structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号