首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The temperature dependence of the primary kinetic isotope effect (KIE), combined temperature-pressure studies of the primary KIE, and studies of the alpha-secondary KIE previously led us to infer that hydride transfer from nicotinamide adenine dinucleotide to flavin mononucleotide in morphinone reductase proceeds via environmentally coupled hydride tunneling. We present here a computational analysis of this hydride transfer reaction using QM/MM molecular dynamics simulations and variational transition-state theory calculations. Our calculated primary and secondary KIEs are in good agreement with the corresponding experimental values. Although the experimentally observed KIE lies below the semiclassical limit, our calculations suggest that approximately 99% of the reaction proceeds via tunneling: this is the first "deep tunneling" reaction observed for hydride transfer. We also show that the dominant tunneling mechanism is controlled by the isotope at the primary rather than the secondary position: with protium in the primary position, large-curvature tunneling dominates, whereas with deuterium in this position, small-curvature tunneling dominates. Also, our study is consistent with tunneling being preceded by reorganization: in the reactant, the rings of the nicotinamide and isoalloxazine moieties are stacked roughly parallel to each other, and as the system moves toward a "tunneling-ready" configuration, the nicotinamide ring rotates to become almost perpendicular to the isoalloxazine ring.  相似文献   

2.
A significant contemporary question in enzymology involves the role of protein dynamics and hydrogen tunneling in enhancing enzyme catalyzed reactions. Here, we report a correlation between the donor-acceptor distance (DAD) distribution and intrinsic kinetic isotope effects (KIEs) for the dihydrofolate reductase (DHFR) catalyzed reaction. This study compares the nature of the hydride-transfer step for a series of active-site mutants, where the size of a side chain that modulates the DAD (I14 in E. coli DHFR) is systematically reduced (I14V, I14A, and I14G). The contributions of the DAD and its dynamics to the hydride-transfer step were examined by the temperature dependence of intrinsic KIEs, hydride-transfer rates, activation parameters, and classical molecular dynamics (MD) simulations. Results are interpreted within the framework of the Marcus-like model where the increase in the temperature dependence of KIEs arises as a direct consequence of the deviation of the DAD from its distribution in the wild type enzyme. Classical MD simulations suggest new populations with larger average DADs, as well as broader distributions, and a reduction in the population of the reactive conformers correlated with the decrease in the size of the hydrophobic residue. The more flexible active site in the mutants required more substantial thermally activated motions for effective H-tunneling, consistent with the hypothesis that the role of the hydrophobic side chain of I14 is to restrict the distribution and dynamics of the DAD and thus assist the hydride-transfer. These studies establish relationships between the distribution of DADs, the hydride-transfer rates, and the DAD's rearrangement toward tunneling-ready states. This structure-function correlation shall assist in the interpretation of the temperature dependence of KIEs caused by mutants far from the active site in this and other enzymes, and may apply generally to C-H→C transfer reactions.  相似文献   

3.
We have identified multiple reactive configurations (MRCs) of an enzyme-coenzyme complex that have measurably different kinetic properties. In the complex formed between morphinone reductase (MR) and the NADH analogue 1,4,5,6-tetrahydro-NADH (NADH4) the nicotinamide moiety is restrained close to the FMN isoalloxazine ring by hydrogen bonds from Asn-189 and His-186 as determined from the X-ray crystal structure. Molecular dynamic simulations indicate that removal of one of these hydrogen bonds in the N189A MR mutant allows the nicotinamide moiety to occupy a region of configurational space not accessible in wild-type enzyme. Using stopped-flow spectroscopy, we show that reduction of the FMN cofactor by NADH in N189A MR is multiphasic, identifying at least four different reactive configurations of the MR-NADH complex. This contrasts with wild-type MR in which hydride transfer occurs by environmentally coupled tunneling in a single kinetic phase [Pudney et al. J. Am. Chem. Soc. 2006, 128, 14053-14058]. Values for primary and alpha-secondary kinetic isotope effects, and their temperature dependence, for three of the kinetic phases in the N189A MR are consistent with hydride transfer by tunneling. Our analysis enables derivation of mechanistic information concerning different reactive configurations of the same enzyme-coenzyme complex using ensemble stopped-flow methods. Implications for the interpretation from kinetic data of tunneling mechanisms in enzymes are discussed.  相似文献   

4.
H-transfer was studied in the complex kinetic cascade of dihydrofolate reductase. Intrinsic kinetic isotope effects, their temperature dependence, and other temperature-dependent parameters indicated H-tunneling, but no 1 degrees to 2 degrees coupled motion. The data also suggested environmentally coupled tunneling and commitment to catalysis on pre-steady-state isotope effects.  相似文献   

5.
A model is presented for coupled hydrogen-electron transfer reactions in condensed phase in the presence of a rate promoting vibration. Large kinetic isotope effects (KIEs) are found when the hydrogen is substituted with deuterium. While these KIEs are essentially temperature independent, reaction rates do exhibit temperature dependence. These findings agree with recent experimental data for various enzyme-catalyzed reactions, such as the amine dehydrogenases and soybean lipoxygenase. Consistent with earlier results, turning off the promoting vibration results in an increased KIE. Increasing the barrier height increases the KIE, while increasing the rate of electron transfer decreases it. These results are discussed in light of other views of vibrationally enhanced tunneling in enzymes.  相似文献   

6.
Rate constants for oxidations of benzyl alcohol-d0 and -d7 by oxoiron(IV) tetramesitylporphyrin radical cation perchlorate in acetonitrile were measured in single turnover kinetic studies. The kinetic isotope effect (kH/kD) increased from 28 at 23 degrees C to 360 at -30 degrees C due to extensive hydrogen atom tunneling that was analyzed in terms of a parabolic energy barrier to tunneling. Similarly, large KIE values were found for oxidations of ethylbenzene-d0 and -d10 at room temperature. The large KIE values are a function of the porphyrin identity, and porphyrins containing electron-withdrawing groups display normal KIEs. KIEs found under catalytic turnover conditions are somewhat smaller than those obtained in single turnover reactions. The results should serve as benchmarks for computational studies of C-H oxidations by porphyrin and heme-iron-oxo systems.  相似文献   

7.
Intramolecular and intermolecular kinetic isotope effects (KIEs) were determined for hydroxylation of the enantiomers of trans-2-(p-trifluoromethylphenyl)cyclopropylmethane (1) by hepatic cytochrome P450 enzymes, P450s 2B1, Delta2B4, Delta2B4 T302A, Delta2E1, and Delta2E1 T303A. Two products from oxidation of the methyl group were obtained, unrearranged trans-2-(p-trifluoromethylphenyl)cyclopropylmethanol (2) and rearranged 1-(p-trifluoromethylphenyl)but-3-en-1-ol (3). In intramolecular KIE studies with dideuteriomethyl substrates (1-d(2)) and in intermolecular KIE studies with mixtures of undeuterated (1-d(0)) and trideuteriomethyl (1-d(3)) substrates, the apparent KIE for product 2 was consistently larger than the apparent KIE for product 3 by a factor of ca. 1.2. Large intramolecular KIEs found with 1-d(2) (k(H)/k(D) = 9-11 at 10 degrees C) were shown not to be complicated by tunneling effects by variable temperature studies with two P450 enzymes. The results require two independent isotope-sensitive processes in the overall hydroxylation reactions that are either competitive or sequential. Intermolecular KIEs were partially masked in all cases and largely masked for some P450s. The intra- and intermolecular KIE results were combined to determine the relative rate constants for the unmasking and hydroxylation reactions, and a qualitative correlation was found for the unmasking reaction and release of hydrogen peroxide from four of the P450 enzymes in the absence of substrate. The results are consistent with the two-oxidants model for P450 (Vaz, A. D. N.; McGinnity, D. F.; Coon, M. J. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3555), which postulates that a hydroperoxy-iron species (or a protonated analogue of this species) is a viable electrophilic oxidant in addition to the consensus oxidant, iron-oxo.  相似文献   

8.
It has been suggested that the magnitudes of secondary kinetic isotope effects (2 degrees KIEs) of enzyme-catalyzed reactions are an indicator of the extent of reaction-center rehybridization at the transition state. A 2 degrees KIE value close to the corresponding secondary equilibrium isotope effects (2 degrees EIE) is conventionally interpreted as indicating a late transition state that resembles the final product. The reliability of using this criterion to infer the structure of the transition state is examined by carrying out a theoretical investigation of the hybridization states of the hydride donor and acceptor in the Escherichia coli dihydrofolate reductase (ecDHFR)-catalyzed reaction for which a 2 degrees KIE close to the 2 degrees EIE was reported. Our results show that the donor carbon at the hydride transfer transition state resembles the reactant state more than the product state, whereas the acceptor carbon is more productlike, which is a symptom of transition state imbalance. The conclusion that the isotopically substituted carbon is reactant-like disagrees with the conclusion that would have been derived from the criterion of 2 degrees KIEs and 2 degrees EIEs, but the breakdown of the correlation with the equilibrium isotope effect can be explained by considering the effect of tunneling.  相似文献   

9.
The literature hypothesis that "the optimization of enzyme catalysis may entail the evolutionary implementation of chemical strategies that increase the probability of quantum-mechanical tunneling" is experimentally tested herein for the first time. The system employed is the key to being able to provide this first experimental test of the "enhanced hydrogen tunneling" hypothesis, one that requires a comparison of the three criteria diagnostic of tunneling (vide infra) for the same, or nearly the same, reaction with and without the enzyme. Specifically, studied herein are the adenosylcobalamin (AdoCbl, also known as coenzyme B(12))-dependent diol dehydratase model reactions of (i). H(D)(*) atom abstraction from ethylene glycol-d(0) and ethylene glycol-d(4) solvent by 5'-deoxyadenosyl radical (Ado(*)) and (ii.) the same H(*) abstraction reactions by the 8-methoxy-5'-deoxyadenosyl radical (8-MeOAdo(*)). The Ado(*) and 8-MeOAdo(*) radicals are generated by Co-C thermolysis of their respective precursors, AdoCbl and 8-MeOAdoCbl. Deuterium kinetic isotope effects (KIEs) of the H(*)(D(*)) abstraction reactions from ethylene glycol have been measured over a temperature range of 80-120 degrees C: KIE = 12.4 +/- 1.1 at 80 degrees C for Ado(*) and KIE = 12.5 +/- 0.9 at 80 degrees C for 8-MeOAdo(*) (values ca. 2-fold that of the predicted maximum primary times secondary ground-state zero-point energy (GS-ZPE) KIE of 6.4 at 80 degrees C). From the temperature dependence of the KIEs, zero-point activation energy differences ([E(D) - E(H)]) of 3.0 +/- 0.3 kcal mol(-)(1) for Ado(*) and 2.1 +/- 0.6 kcal mol(-)(1) for 8-MeOAdo(*) have been obtained, both of which are significantly larger than the nontunneling, zero-point energy only maximum of 1.2 kcal mol(-)(1). Pre-exponential factor ratios (A(H)/A(D)) of 0.16 +/- 0.07 for Ado(*) and 0.5 +/- 0.4 for 8-MeOAdo(*) are observed, both of which are significantly less than the 0.7 minimum for nontunneling behavior. The data provide strong evidence for the expected quantum mechanical tunneling in the Ado(*) and 8-MeOAdo(*)-mediated H(*) abstraction reactions from ethylene glycol. More importantly, a comparison of these enzyme-free tunneling data to the same KIE, (E(D) - E(H)) and A(H)/A(D) data for a closely related, Ado(*)-mediated H(*) abstraction reaction from a primary CH(3)- group in AdoCbl-dependent methylmalonyl-CoA mutase shows the enzymic and enzyme-free data sets are identical within experimental error. The Occam's Razor conclusion is that at least this adenosylcobalamin-dependent enzyme has not evolved to enhance quantum mechanical tunneling, at least within the present error bars. Instead, this B(12)-dependent enzyme simply exploits the identical level of quantum mechanical tunneling that is available in the enzyme-free, solution-based H(*) abstraction reaction. The results also require a similar, if not identical, barrier width and height within experimental error for the H(*) abstraction both within, and outside of, the enzyme.  相似文献   

10.
Type-III copper-containing enzymes have dicopper centers in their active sites and exhibit a novel capacity for activating aliphatic C-H bonds in various substrates by taking molecular oxygen. Dicopper enzyme models developed by Tolman and co-workers reveal exceptionally large kinetic isotope effects (KIEs) for the hydrogen transfer process, indicating a significant tunneling effect. In this work, we demonstrate that variational transition state theory allows accurate prediction of the KIEs and Arrhenius parameters for such model systems. This includes multidimensional tunneling based on state-of-the-art quantum-mechanical calculations of the minimum-energy path (MEP). The computational model of bis(μ-oxo)dicopper enzyme consists of 70 atoms, resulting in a 204-dimensional potential energy surface. The calculated values of E(a)(H) - E(a)(D), A(H)/A(D), and the KIE at 233 K are -1.86 kcal/mol, 0.51, and 28.1, respectively, for the isopropyl ligand system. These values agree very well with experimental values within the limits of experimental error. For the representative tunneling path (RTP) at 233 K, the pre- and post-tunneling configurations are 3.3 kcal/mol below the adiabatic energy maximum, where the hydrogen travels 0.54 ? by tunneling. We found that tunneling is very efficient for hydrogen transfer and that the RTP is very different from the MEP. It is mainly heavy atoms that move as the reaction proceeds from the reactant complex to the pretunneling configuration, and the hydrogen atom suddenly hops at that point.  相似文献   

11.
The rate and kinetic isotope effect (KIE) on proton transfer during the aromatic amine dehydrogenase-catalyzed reaction with phenylethylamine shows complex pressure and temperature dependences. We are able to rationalize these effects within an environmentally coupled tunneling model based on constant pressure molecular dynamics (MD) simulations. As pressure appears to act anisotropically on the enzyme, perturbation of the reaction coordinate (donor-acceptor compression) is, in this case, marginal. Therefore, while we have previously demonstrated that pressure and temperature dependences can be used to infer H-tunneling and the involvement of promoting vibrations, these effects should not be used in the absence of atomistic insight, as they can vary greatly for different enzymes. We show that a pressure-dependent KIE is not a definitive hallmark of quantum mechanical H-tunneling during an enzyme-catalyzed reaction and that pressure-independent KIEs cannot be used to exclude tunneling contributions or a role for promoting vibrations in the enzyme-catalyzed reaction. We conclude that coupling of MD calculations with experimental rate and KIE studies is required to provide atomistic understanding of pressure effects in enzyme-catalyzed reactions.  相似文献   

12.
Cyclooxygenases-1 and -2 are tyrosyl radical (Y·)-utilizing hemoproteins responsible for the biosynthesis of lipid-derived autocoids. COX-2, in particular, is a primary mediator of inflammation and believed to be up-regulated in many forms of cancer. Described here are first-of-a-kind studies of COX-2-catalyzed oxidation of the substrate analogue linoleic acid. Very large (≥20) temperature-independent deuterium kinetic isotope effects (KIEs) on the rate constant for enzyme turnover were observed, due to hydrogen atom abstraction from the bisallylic C-H(D) of the fatty acid. The magnitude of the KIE depends on the O(2) concentration, consistent with reversible H/D tunneling mediated by the catalytic Y·. At physiological levels of O(2), retention of the hydrogen initially abstracted by the catalytic tyrosine results in strongly temperature-dependent KIEs on O-H(D) homolysis, also characteristic of nuclear tunneling.  相似文献   

13.
Doll KM  Finke RG 《Inorganic chemistry》2003,42(16):4849-4856
An intriguing but controversial hypothesis has appeared that "The optimization of enzyme catalysis may entail the evolutionary implementation of chemical strategies that increase the probability of tunneling and thereby accelerate the reaction rate" (Kohen, A.; Klinman, J. P. Acc. Chem. Res. 1998, 31, 397). Restated, enzymes may have evolved to enhance quantum mechanical tunneling by coupling to protein low nu modes that squeeze the reacting centers together in, for example, their H(*) atom abstraction reactions. Such a putative "protein squeezing" mechanism would enhance hydrogen quantum mechanical tunneling by reducing the barrier width. An alternative hypothesis is that enzymes do not enhance tunneling, but simply exploit the same amount of tunneling present in their enzyme-free solution reactions, if those reactions occur. A third, conceivable hypothesis is that enzymes might even inadvertently decrease the amount of tunneling as an undesired result of increasing the barrier width while reducing the barrier height. Testing these hypotheses experimentally requires the extremely rare event of being able to measure the amount of tunneling both in the enzyme system and in a very similar if not identical reaction in enzyme-free solution. This has been accomplished experimentally in only one prior case, our recent study of AdoCbl (coenzyme B(12)) and 8-Meo-AdoCbl undergoing enzyme-like H(*) abstraction reactions (Doll, K. M.; Bender, B. R.; Finke, R. G. to J. Am. Chem. Soc. 2003, in press). The data there reveal no change in the level of tunneling within or outside of the enzyme in comparison to the best literature data for an AdoCbl-dependent enzyme, methylmalonyl-CoA mutase. However, that first system suffers from two limitations: the measurement of the KIE (kinetic isotope effect) data in a nonenzymic 80-110 degrees C temperature range; and lower precision data than desired due to the HPLC-MS method required for one of the KIE analyses. These limitations have now been overcome by the synthesis, then thermolysis and KIE study vs temperature of the H(*) abstraction reaction of beta-neopentylcobalamin (beta-NpCbl) in ethylene glycol-d(0) and ethylene glycol-d(4). This is the first experimental test of Klinman's hypothesis using KIE data obtained at enzyme-relevant temperatures. The key data obtained are as follows: deuterium KIEs of 23.1 +/- 3.0 at 40 degrees C to 39.0 +/- 2.3 at 10 degrees C; an activation energy difference E(D) - E(H) of 3.1 +/- 0.3 kcal mol(-)(1); and a pre-exponential factor ratio A(H)/A(D) of 0.14 +/- 0.07. Moreover, our now three sets of data (NpCbl; AdoCbl; 8-MeOAdoCbl) are shown to lie on the same ln KIE vs 1/T linear plot yielding a set of enzyme-temperature-relevant, high-precision KIE, E(D) - E(H), and A(H)/A(D) data over a relatively large, 110 degrees C temperature range. Significantly, the enzyme-free solution KIE, E(D) - E(H), and A(H)/A(D) are identical within experimental error to those for methylmalonyl-CoA mutase. This finding leads to the conclusion that there is no enzymic enhancement of the tunneling in at least this B(12)-dependent enzyme. This B(12) enzyme does, however, exploit the same (unchanged) level of tunneling measured for the nonenzymic, Ado(*) solution H(*) abstraction reaction. A discussion is presented of the still open question of if this first experimental finding, of "no enzymic enhancement of tunneling" in one B(12)-dependent enzymic system, is likely to prove more general or not.  相似文献   

14.
Using solid-state NMR spectroscopy, we have detected and characterized ultrafast intramolecular proton tautomerism in the N-H-N hydrogen bonds of solid N, N'-diphenyl-6-aminofulvene-1-aldimine ( I) on the microsecond-to-picosecond time scale. (15)N cross-polarization magic-angle-spinning NMR experiments using (1)H decoupling performed on polycrystalline I- (15)N 2 and the related compound N-phenyl- N'-(1,3,4-triazole)-6-aminofulvene-1-aldimine ( II) provided information about the thermodynamics of the tautomeric processes. We found that II forms only a single tautomer but that the gas-phase degeneracy of the two tautomers of I is lifted by solid-state interactions. Rate constants, including H/D kinetic isotope effects (KIEs), on the microsecond-to-picosecond time scale were obtained by measuring and analyzing the longitudinal (15)N and (2)H relaxation times of I- (15)N 2, I- (15)N 2- d 10, and I- (15)N 2- d 1 over a wide temperature range. In addition to the microcrystalline modification, a novel amorphous modification of I was found and studied. In this modification, proton transfer is much faster than in the crystalline form. For both modifications, we observed large H/D KIEs that were temperature-dependent at high temperatures and temperature-independent at low temperatures. These findings are interpreted in terms of a simple quasiclassical tunneling model proposed by Bell and modified by Limbach. We obtained evidence that a reorganization energy is necessary in order to compress the N-H-N hydrogen bond and achieve a molecular configuration in which the barrier for H transfer is reduced and tunneling or an over-barrier reaction can occur.  相似文献   

15.
Upconverting phosphors (UCPs) convert multiple low energy photons into higher energy emission via the process of photon upconversion and offer an attractive alternative to organic fluorophores for use as luminescent probes. Here, UCPs were capped with functionalized silica in order to provide a surface to covalently conjugate proteins with surface-accessible cysteines. Variants of green fluorescent protein (GFP) and the flavoenzyme pentaerythritol tetranitrate reductase (PETNR) were then attached via maleimide-thiol coupling in order to allow energy transfer from the UCP to the GFP or flavin cofactor of PETNR, respectively. PETNR retains its activity when coupled to the UCPs, which allows reversible detection of enzyme substrates via ratiometric sensing of the enzyme redox state.  相似文献   

16.
This work describes the application of NMR to the measurement of secondary deuterium (2° (2)H) and carbon-13 ((13)C) kinetic isotope effects (KIEs) at positions 9-13 within the substrate linoleic acid (LA) of soybean lipoxygenase-1. The KIEs have been measured using LA labeled with either protium (11,11-h2-LA) or deuterium (11,11-d2-LA) at the reactive C11 position, which has been previously shown to yield a primary deuterium isotope effect of ca. 80. The conditions of measurement yield the intrinsic 2° (2)H and (13)C KIEs on k(cat)/K(m) directly for 11,11-d2-LA, whereas the values for the 2° (2)H KIEs for 11,11-h2-LA are obtained after correction for a kinetic commitment. The pattern of the resulting 2° (2)H and (13)C isotope effects reveals values that lie far above those predicted from changes in local force constants. Additionally, many of the experimental values cannot be modeled by electronic effects, torsional strain, or the simple inclusion of a tunneling correction to the rate. Although previous studies have shown the importance of extensive tunneling for cleavage of the primary hydrogen at C11 of LA, the present findings can only be interpreted by extending the conclusion of nonclassical behavior to the secondary hydrogens and carbons that flank the position undergoing C-H bond cleavage. A quantum mechanical method introduced by Buhks et al. [J. Phys. Chem. 1981, 85, 3763] to model the inner-sphere reorganization that accompanies electron transfer has been shown to be able to reproduce the scale of the 2° (2)H KIEs.  相似文献   

17.
The H/D primary kinetic isotope effect (KIE) for the hydride transfer reaction catalyzed by Escherichia coli dihydrofolate reductase (ecDHFR) is calculated as a function of temperature employing ensemble-averaged variational transition-state theory with multidimensional tunneling. The calculated KIEs display only a small temperature dependence over the temperature range of 5 to 45 degrees C. We identify two key features that contribute to canceling most of the temperature dependence of the KIE that would be expected on the basis of simpler models. Related issues such as the isotope effects on Arrhenius preexponential factors, large differences between free energies of activation and Arrhenius activation energy, and fluctuations of effective barriers are also discussed.  相似文献   

18.
Although there are considerable data demonstrating that quantum mechanical hydrogen tunneling (HT) occurs in both enzymatic and nonenzymatic systems, little data exist that address the question of whether enzymes enhance the amount of HT relative to the corresponding nonenzymatic reactions. To investigate whether 3-oxo-Delta (5)-steroid isomerase (ketosteroid isomerase, KSI) enhances HT relative to the nonenzymatic (acetate-catalyzed) isomerization of Delta (5)-androstene-3,17-dione ( 1) to Delta (4)-androstene-3,17-dione ( 3), alpha-secondary deuterium kinetic isotope effects (KIE) at C-6 of the steroid were determined for both the KSI- and acetate-catalyzed isomerizations. The normal intrinsic secondary KIE for both wild type (WT) KSI (1.073 +/- 0.023) and acetate (1.031 +/- 0.010) suggest the possibility of coupled motion (CM)/HT in both the enzymatic and nonenzymatic systems. To assess the contribution of CM/HT in these reactions, the secondary KIE were also measured under conditions in which deuterium instead of hydrogen is transferred. The decrease in secondary KIE for WT (1.035 +/- 0.011) indicates the presence of CM/HT in the enzymatic reaction, whereas the acetate reaction shows no change in secondary KIE for deuterium transfer (1.030 +/- 0.009) and therefore no evidence for CM/HT. On the basis of these experiments, we propose that KSI enhances the CM/HT contribution to the rate acceleration over the solution reaction. Active site mutants of KSI (Y14F and D99A) yield secondary KIEs similar to that of WT, indicating that mutations at the hydrogen-bonding residues do not significantly decrease the contribution of CM/HT to the KSI reaction.  相似文献   

19.
High-level quantum chemistry calculations have been used to examine the hydrogen-abstraction reactions of diol dehydratase (DDH) in the context of both the catalytic mechanism and the enzyme dysfunction phenomenon termed suicide inactivation. The barriers for the catalytic hydrogen-abstraction reactions of ethane-1,2-diol and propane-1,2-diol are examined in isolation, as well as in the presence of various Br?nsted acids and bases. Modest changes in the magnitudes of the initial and final abstraction barriers are seen, depending on the strength of the acid or base, and on whether these effects are considered individually or together. The most significant changes (ca. 20 kJ mol(-1)) are found for the initial abstraction barrier when the spectator OH group is partially deprotonated. Kinetic isotope effects including Eckart tunneling corrections (KIEs) have also been calculated for these model systems. We find that contributions from tunneling are of a magnitude similar to that of the contributions from semiclassical theory alone, meaning that quantum effects serve to significantly accelerate the rate of hydrogen transfer. The calculated KIEs for the partially deprotonated system are in qualitative agreement with experimentally determined values. In complementary investigations, the ability of DDH to become deactivated by certain substrate analogues is examined. In all cases, the formation of a stable radical intermediate causes the hydrogen re-abstraction step to become an extremely endothermic process. The consequent inability of 5'-deoxyadenosyl radical to be regenerated breaks the catalytic cycle, resulting in the suicide inactivation of DDH.  相似文献   

20.
Leaving-group fluorine as well as the primary and secondary deuterium kinetic isotope effects (KIEs) have been determined for the base-promoted elimination of hydrogen fluoride from 4-fluoro-4-(4'-nitrophenyl)butan-2-one in aqueous solution. The elimination was studied for formate, acetate, and imidazole as the catalyzing base. The fluorine KIEs were determined using the accelerator-produced short-lived radionuclide (18)F in combination with natural (19)F. The (19)F substrate was labeled with (14)C in a remote position to enable radioactivity measurement of both isotopic substrates. The elimination reaction exhibits large primary deuterium KIEs: 3.2, 3.7, and 7.5 for formate, acetate, and imidazole, respectively, thus excluding the E1 mechanism. The corresponding C(4)-secondary deuterium KIEs are 1.038, 1.050 and 1.014 and the leaving group fluorine KIEs are 1.0037, 1.0047 and 1.0013, respectively. The size of the fluorine KIEs corresponds to 5-15% of the estimated maximum of 1.03 for complete C-F bond breakage. No H/D exchange is observed during the reaction. The size and trends of the KIEs for the different bases are consistent with an E1cB-like E2 or an E1cB(ip) mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号