首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

2.
We present here the first examples of lanthanide ion complexes with only isophthalic acid or thiophenylisophthalic acid ligands. The complexes of isophthalic acid with Eu(3+) (1) and Tb(3+) (2) and the moderately soluble complexes of 5-thiophen-3-ylisophthalate with Eu(3+) (3), Gd(3+) (4), and Tb(3+) (5) were isolated as single crystals through gel crystallization. X-ray diffraction studies confirm the cross-linking structure of these complexes, which, in case of the thiophenyl derivatives, results in low solubility in common solvents. The two-dimensional isophthalato complex of Eu(3+) (1) crystallizes in the C2/c space group, with a = 22.154(4), b = 12.649(3), and c = 15.921(3) A, beta = 112.34(3) degrees, and V = 4126.7(14) A(3), while the one-dimensional Tb(3+) complex of the same ligand, 2, crystallizes in the space group P2(1)/c with a = 11.921(2), b = 10.838(2), and c = 17.499(4) A, beta = 92.44(3) degrees, and V = 2258.9(8) A(3). The thiophenylisophthalato complexes of Eu(3+) (3) and Gd(3+) (4) are two-dimensional and crystallize in the P2/n space group with parameters for 3 of a = 14.139(3), b = 10.684(2), and c = 15.138(3) A, beta = 102.51(3) degrees, and V = 2232.3(8) A(3) and parameters for 4 of a = 14.1195(13), b = 10.6594(10), and c = 15.1149(14) A, beta = 102.529(2) degrees, and V = 2220.7(4) A(3), while the Tb(3+) complex, 5, also two-dimensional, crystallizes in the P space group with a = 11.051(2), b = 14.528(3), and c = 15.041(3) A, alpha = 77.63(3), beta = 87.86(3), and gamma = 83.51(3) degrees, and V = 2343.48 A(3). All complexes of Eu(3+) and Tb(3+) luminesce in aqueous solution, and the luminescence lifetimes and quantum yields are 123.8 +/- 7.4, 0.14% (1), 475.1 +/- 14.5, 3.58% (3), 129.3 +/- 3.5, 0.19% (4), and 213.9 +/- 2.2 micros, 7.46% (5).  相似文献   

3.
The effect of Y(III) and Gd(III) coactivator ions on the intensity of Eu(III) and Tb(III) luminescence in monomer and polymer mixed-metal complexes was studied. Isomorphic replacement of Eu(III) and Tb(III) ions by Y(III) and Gd(III) ions in macromolecular complexes led to sensitization of Eu(III) and Tb(III) ion luminescence. A mechanism of columinescence was suggested. It involves a charge transfer and the ligand orbitals and the vacant orbitals of Eu(III) and Tb(III) ions and coactivators.  相似文献   

4.
Herein, a new aromatic carboxylate ligand, namely, 4-(dipyridin-2-yl)aminobenzoic acid (HL), has been designed and employed for the construction of a series of lanthanide complexes (Eu(3+) = 1, Tb(3+) = 2, and Gd(3+) = 3). Complexes of 1 and 2 were structurally authenticated by single-crystal X-ray diffraction and were found to exist as infinite 1D coordination polymers with the general formulas {[Eu(L)(3)(H(2)O)(2)]}(n) (1) and {[Tb(L)(3)(H(2)O)].(H(2)O)}(n) (2). Both compounds crystallize in monoclinic space group C2/c. The photophysical properties demonstrated that the developed 4-(dipyridin-2-yl)aminobenzoate ligand is well suited for the sensitization of Tb(3+) emission (Φ(overall) = 64%) thanks to the favorable position of the triplet state ((3)ππ*) of the ligand [the energy difference between the triplet state of the ligand and the excited state of Tb(3+) (ΔE) = (3)ππ* - (5)D(4) = 3197 cm(-1)], as investigated in the Gd(3+) complex. On the other hand, the corresponding Eu(3+) complex shows weak luminescence efficiency (Φ(overall) = 7%) due to poor matching of the triplet state of the ligand with that of the emissive excited states of the metal ion (ΔE = (3)ππ* - (5)D(0) = 6447 cm(-1)). Furthermore, in the present work, a mixed lanthanide system featuring Eu(3+) and Tb(3+) ions with the general formula {[Eu(0.5)Tb(0.5)(L)(3)(H(2)O)(2)]}(n) (4) was also synthesized, and the luminescent properties were evaluated and compared with those of the analogous single-lanthanide-ion systems (1 and 2). The lifetime measurements for 4 strongly support the premise that efficient energy transfer occurs between Tb(3+) and Eu(3+) in a mixed lanthanide system (η = 86%).  相似文献   

5.
A novel ligand, N2,N6-bis[2-(3-methylpyridyl)]pyridine-2,6-dicarboxamide (L2) and the corresponding Eu(III) and Tb(III) hydrochlorate complexes have been synthesized and characterized in detail based on elemental analysis, IR and NMR. The crystal and molecular structure of the complexes was determined by X-ray crystallography. The Eu(III) and Tb(III) ions were found to coordinate to the amido nitrogen atoms and pyridine nitrogen atoms. The luminescence properties of lanthanide complexes in solid state, in different solutions and in different pH value were investigated. The result shows that Tb(III) complexes exhibit more efficient luminescence than Eu(III) complexes, and the ligand (L2) is an excellent sensitizer to Tb(III) ion.  相似文献   

6.
The enantiomers of N,N'-bis(1-phenylethyl)-2,6-pyridinedicarboxamide (L), namely, (R,R)-1, and (S,S)-1, react with Ln(III) ions to give stable [LnL(3)](3+) complexes in an anhydrous acetonitrile solution and in the solid state, as evidenced by electrospray ionization mass spectrometry, NMR, luminescence titrations, and their X-ray crystal structures, respectively. All [LnL(3)](3+) complexes [Ln(III) = Eu, Gd, Tb, and Yb; L = (R,R)-1 and (S,S)-1] are isostructural and crystallize in the cubic space group I23. Although the small quantum yields of the Ln(III)-centered luminescence clearly point to the poor efficiency of the luminescence sensitization by the ligand and the intersystem crossing and ligand-to-metal energy transfers, the ligand triplet-excited-state energy seems relatively well suited to sensitize many Ln(III) ion's emission for instance, in the visible (Eu and Tb), near-IR (Nd and Yb), or both regions (Pr, Sm, Dy, Er, and Tm).  相似文献   

7.
The synthesis and photophysical properties of novel luminescent ruthenium(II) bipyridyl complexes containing one, two, or six lower rim acid-amide-modified calix[4]arene moieties covalently linked to the bipyridine groups are reported which are designed to coordinate and sense luminescent lanthanide ions. All the Ru-calixarene complexes synthesized in this work are able to coordinate Nd(3+), Eu(3+), and Tb(3+) ions with formation of adducts of variable stoichiometry. The absorbance changes allow the evaluation of association constants whose magnitudes depend on the nature of the complexes as well as on the nature of the lanthanide cation. Lanthanide cation complex formation affects the ruthenium luminescence which is strongly quenched by Nd(3+) ion, moderately quenched by the Eu(3+) ion, and poorly or moderately increased by the Tb(3+) ion. In the case of Nd(3+), the excitation spectra show that (i) the quenching of the Ru luminescence occurs via energy transfer and (ii) the electronic energy of the excited calixarene is not transferred to the Ru(bpy)(3) but to the neodymium cation. In the case of Tb(3+), the adduct's formation leads to an increase of the emission intensities and lifetimes. The reason for this behavior was ascribed to the electric field created around the Ru calix[4]arene complexes by the Tb(3+) ions by comparison with the Gd(3+) ion, which behaves identically and can affect ruthenium luminescence only by its charge. However, especially for compounds 1 and 3, it cannot be excluded that some contribution comes from the decrease of vibrational motions (and nonradiative processes) due to the rigidification of the structure upon Tb(3+) complexation. In the case of Eu(3+), compounds 1, 2, and 4 were quenched by the lanthanide addition but the quenching of the ruthenium luminescence is not accompanied by europium-sensitized emission which suggests that an electron-transfer mechanism is responsible for the quenching. On the contrary, compound 3 exhibits enhanced emission upon addition of Eu(3+) (as nitrate salt); it is suggested that the lack of quenching in the [3.2Eu(3+)] adduct is due to kinetic reasons because the electron-transfer quenching process is thermodynamically allowed.  相似文献   

8.
Ortho-phthalic anhydride was modified with long chain alcohol (1-hexadecanol, 1-octadecanol and 1-eicosanol) to their corresponding mono-L phthalate (L=hexadecyl, octadecyl and eicosyl), i.e. monohexadecyl phthalate (16-Phth), monooctadecyl phthalate (18-Phth), and monoeicosyl phthalate (20-Phth), respectively. Nine novel lanthanide (Eu(3+), Tb(3+) and Dy(3+)) complexes with these three mono-L phthalate ligands were synthesized and characterized by elemental analysis and IR spectra. The photophysical properties of these complexes were studied in detail with various spectroscopes such as ultraviolet-visible absorption spectra, low temperature phosphorescence spectra and fluorescent spectra. The ultraviolet-visible absorption spectra show some band shifts with the different chain-length of phthalate monoester and homologous lanthanide complexes. From the low temperature phosphorescent emission, the triplet state energies for these three ligands were determined to be around 22,650 cm(-1) (16-Phth), 23,095 cm(-1) (18-Phth) and 22,400 cm(-1) (20-Phth), respectively, suggesting they are suitable for the sensitization of the luminescence of Eu(3+), Tb(3+) and Dy(3+). The fluorescence excitation and emission spectra for these lanthanides complexes of the three ligands take agreement with the above predict from energy match.  相似文献   

9.
Focusing on the use of nanophosphors for in vivo imaging and diagnosis applications, we used thermally stimulated luminescence (TSL) measurements to study the influence of trivalent lanthanide Ln(3+) (Ln = Dy, Pr, Ce, Nd) electron traps on the optical properties of Mn(2+)-doped diopside-based persistent luminescence nanoparticles. This work reveals that Pr(3+) is the most suitable Ln(3+) electron trap in the diopside lattice, providing optimal trap depth for room temperature afterglow and resulting in the most intense luminescence decay curve after X-ray irradiation. This luminescence dependency toward the electron trap is maintained through additional doping with Eu(2+), allowing UV-light excitation, critical for bioimaging applications in living animals. We finally identify a novel composition (CaMgSi(2)O(6):Eu(2+),Mn(2+),Pr(3+)) for in vivo imaging, displaying a strong near-infrared afterglow centered on 685 nm, and present evidence that intravenous injection of such persistent luminescence nanoparticles in mice allows not only improved but highly sensitive detection through living tissues.  相似文献   

10.
We report an alternative approach, that is, forming Eu(tta)3dpbt (dpbt = 2-( N, N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine, tta = thenoyltrifluoroacetonato) nanoparticles in water/methanol mixtures, to satisfy the combined requirements of good dispersibility in water solutions and efficient long-wavelength sensitization for Eu (III) complexes to be used in biological applications. The size of Eu(tta)3dpbt colloidal particles with very high luminescent capabilities can be modulated to some extent by changing the preparation conditions. The optical excitation window for the Eu (III) luminescence of Eu(tta)3dpbt nanoparticles, extending up to 475 nm, is wider than that of Eu(tta)3dpbt molecules dissolved in toluene. This is the first example for obviously extending the sensitization window of luminescent lanthanide materials to the long-wavelength region by forming nanoparticles of a lanthanide complex. Quantum yields of Eu (III) luminescence of the prepared Eu(tta)3dpbt colloidal particles, with an average diameter of 33.1 nm, are 0.27, 0.27, 0.24, 0.19, 0.14, and 0.01 upon excitation at 402, 420, 430, 440, 450, and 475 nm, respectively. The Eu(tta)3dpbt nanoparticles exhibited excellent two-photon sensitization performance with a highest delta Phi value of 3.2 x 10(5) GM (1 GM = 10(-50) cm4 s photo(-1) particle(-1)) at the excitation wavelength of 832 nm, which is about 7 times higher than the highest value reported for the CdSe/ZnS core-shell quantum dots. The favorable luminescent properties and the good dispersibility in water solutions of the Eu(tta)3dpbt nanoparticles are very promising for the development of new luminescent nanoprobes for bioanalysis.  相似文献   

11.
Luminescence properties of Tb(III) and Eu(III) complexes of quinolonecarboxylic acid derivatives were studied. Optimal conditions of luminescence were determined, and the influence of surfactants and diethylenetriaminepentaacetic acid on the luminescence properties of the complexes was studied. It was demonstrated that species-specific immunoglobulins labeled with terbium ions can be determined with the detection limit of the lanthanide label 5 x 10-14 M.  相似文献   

12.
Syntheses, lanthanide quantitative analyses, mass spectrometry and luminescence spectroscopy, and decay dynamics of crystals containing pentanuclear hetero-lanthanide(III) nanoclusters [(Ln'(5-x)Ln(x))(NO(3))(6)(mu(5)-OH)(mu(4)-L)(2)] (0 < or = x < or = 5), Ln' = Eu or Tb; Ln = La-Nd, Sm-Ho (hereafter Ln'(5-x) Ln(x)) were undertaken in search of information on factors governing self-assembly processes by which the clusters are formed and electronic interactions within and between them. The data obtained are consistent with the self-assembly of Ln'(5-x) Ln(x) nanoclusters being a concerted process featuring a profound expression of complementarity among mutually bridging [Ln(mu(4)-L](-) and [Ln(NO(3))(2)](+) components. The energy transport regime in crystals of Eu(5-x) Ln(x) is in the dynamic regime when x = 0 or Ln = La and, at 293 K, Ln = Dy, despite the presence of two crystallographically different Eu(3+) coordination environments which give rise to a doublet in the excitation and emission spectra of Eu(3+)((5)D(0)). The luminescence decay behavior of Eu(3+)((5)D(0)) in Eu(5-x) Ln(x) (Ln = Dy (for 77 K), Sm) is intermediate between the static and dynamic limits and reveals extensive electronic coupling among lanthanide ions, including many-body processes at relatively high Dy(3+) or Sm(3+) concentrations.  相似文献   

13.
A two-component ligand system (1) containing 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) as the hosting unit for the lanthanide cations and an appended asymmetrically functionalized 1,10-phenanthroline (phen) as the chromophore was synthesized. The 1:1 complexes with Eu(3+), Gd(3+), Tb(3+), and Yb(3+) have been prepared and studied in aqueous solution. For Gd.1, a relaxivity value of 2.4 mM(-1) s(-1) has been measured at 20 MHz and 25 degrees C, which indicates that there are no water molecules in the first coordination sphere of the metal ion. The analysis of high resolution (1)H NMR spectra of Yb.1 supports this view and suggests the direct involvement of the phen moiety in the coordination of the metal ion. For Eu.1 and Tb.1, the absorption and luminescence spectra, the overall luminescence efficiencies, and the metal-centered (MC) lifetimes were obtained; coordination features were also determined by comparing luminescence properties in water and deuterated water. For Eu.1 and Tb.1, the overall emission sensitization (se) process in air-equilibrated water was found to be notably effective with phi(se) = 0.21 and 0.11, respectively. A detailed study of the steps originating from light absorption at the phen unit and leading to MC sensitized emission was performed.  相似文献   

14.
A new family of mixed-lanthanide cyano-bridged coordination polymers Ln(0.5)Ln'(0.5)(H(2)O)(5)[W(CN)(8)] (where Ln/Ln' = Eu(3+)/Tb(3+), Eu(3+)/Gd(3+), and Tb(3+)/Sm(3+)) containing two lanthanide and one transition metal ions were obtained and characterized by X-ray diffraction, photoluminescence spectroscopy, magnetic analyses, and theoretical computation. These compounds are isotypical and crystallize in the tetragonal system P4/nmm forming two-dimensional grid-like networks. They present a magnetic ordering at low temperature and display the red Eu(3+) ((5)D(0) → (7)F(0-4)) and green Tb(3+) ((5)D(4) → (7)F(6-2)) characteristic photoluminescence. The Tb(0.5)Eu(0.5)(H(2)O)(5)[W(CN)(8)] compound presents therefore green and red emission and shows Tb(3+)-to-Eu(3+) energy transfer.  相似文献   

15.
A series of doped CeF(3): RE(3+) (RE(3+): Tb(3+), Eu(3+) and Dy(3+)) nanoparticles were synthesized, with the aim of obtaining a white light emitting composition, by a simple polyol route at 160°C and characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR) and photoluminescence. Uniformly distributed and highly water-dispersible rectangular nanoparticles (length ~15-20 nm, breadth ~5-10 nm) were obtained. The steady state and time resolved luminescence studies confirmed efficient energy transfer from the host to activator ions. Lifetime studies revealed that optimum luminescence is observed for 2.5 mol% Dy(3+) and 7.5 mol% Tb(3+). The energy transfer efficiencies (Ce(3+) to activators) were found to be 89% for CeF(3): Tb(3+) (7.5 mol%) nanoparticles and 60% for CeF(3): Dy(3+) (2.5 mol%) nanoparticles. Different concentrations of Tb(3+), Eu(3+) and Dy(3+) were doped to achieve a white light emitting phosphor for UV-based LEDs (light emitting diodes). Finally CeF(3), triply doped with 2.0 mol%Tb(3+), 4.5 mol% Eu(3+) and 3.5 mol% Dy(3+), was found to have impressive chromaticity co-ordinates, close to broad day light. The colloidal solutions of doped CeF(3) nanoparticles emitted bright green (Tb(3+)), blue (Dy(3+)) and white (triply doped) luminescence upon host excitation. Composites of poly methyl methacrylate (PMMA) and poly vinyl alcohol (PVA) were made with CeF(3): 5.0 mol%Tb(3+), CeF(3): 5.0 mol% Dy(3+) and triply doped white light emitting composition. The CeF(3)/PMMA (PVA) nanocomposite films, so obtained, are highly transparent (in the visible spectral range) and exhibit strong photoluminescence upon UV excitation.  相似文献   

16.
A new ligand family based on picoline, bipyridine and terpyridine containing a nitro moiety has been synthesized and its coordination and sensitization ability for lanthanide ions has been studied. Three new complexes were characterized by X-ray single crystal diffraction and all three show uncommon coordination of the nitro moiety to the lanthanide ion. , a terpyridine-nitro derivative with Tb(NO(3))(3), crystallizes in the orthorhombic space group Pbca with a = 15.125(3), b = 13.776(3), c = 18.716(4) ?, and V = 3899.8(13) ?(3) and is isostructural with its Eu(iii) analog () with cell parameters a = 15.1341(4), b = 13.7070(4), c = 18.8277(5) ?. , a tripodal amine with a nitro-derivatized pyridine with Eu(CF(3)SO(3))(3), crystallizes in the triclinic space group P1[combining macron] with a = 11.067(2), b = 11.633(2), c = 12.772(3) ?, α = 110.94(3), β = 97.49(3), γ = 91.42(3)° and V = 1518.1(5) ?(3). Finally, ligand , a bipyridine-nitro derivative, crystallizes in the orthorhombic space group P2(1)/n with a = 3.7128(3), b = 11.7806(8), c = 19.9856(14) ?, β = 92.925(2)° and V = 873.01(11) ?(3). All four ligands show sensitization of Eu(iii) and Tb(iii) luminescence.  相似文献   

17.
A series of tris(2-pyridylmethyl)amines including one and two asymmetric centers were synthesized in a stereo-controlled fashion as potential ligands of lanthanide cations. The reaction of chiral pyridylethyl methanesulfonates and bis(pyridylmethyl)amines occurred via an S(N)2 mechanism with complete inversion of asymmetric centers and gave the stereocontrolled tris(2-pyridylmethyl)amines, the stereochemical purity of which was ascertained by GPC, NMR, X-ray, and polarimetry experiments. They formed stable Tb(3+) and Eu(3+) complexes having 1:1, 1:2, and 1:3 stoichiometry (metal:ligand) in CH(3)CN solutions. NMR and UV titration experiments revealed that their complexation behaviors were rarely influenced by ligand chirality but significantly affected by the nature of the counteranion and the concentration ratio of metal to ligand. The Tb(3+) and Eu(3+) complexes with these tripodal ligands exhibited characteristic luminescence spectra upon excitation for pyridine chromophores (260 nm), the intensities of which were largely dependent on the ligand chirality. The meso isomer of the disubstituted tripods particularly exhibited the enhanced terbium luminescence ca. three times more than its diastereomer and un- and monosubstituted tripods. Direct excitation at the lanthanide center had similar chirality effects on the luminescence profiles, indicating that the stereochemistry of the employed ligand largely influenced the lanthanide emitting processes. Since the ligand chirality finely modified the local coordination environments around the lanthanide center, the use of stereocontrolled ligands is applicable in design of the luminescent lanthanide complexes.  相似文献   

18.
The synthesis of a new 15-membered polyaza-macrocyclic ligand L3H3, which is based on a 2,2'-bipyridine moiety and a diethylenetriaminetriacetic acid core, is reported. The lanthanide chelates of this octadentate ligand were programmed for bimodal probes, luminescent agents (Sm, Eu, Tb, Dy), and magnetic resonance imaging agents (Gd3+). The neutral 1:1 complexes with these Ln3+ ions were prepared and studied in aqueous solution by luminescence and NMR techniques. The main photophysical characteristics of these complexes (i.e., the absorption and luminescence spectra, the metal-centered lifetimes, and the overall luminescence yields, Phi) were measured. In addition, the role played by nonradiative pathways (vibrational energy transfer involving coordinated water molecules, involvement of ligand-to-metal charge-transfer excited states, or metal --> ligand back transfer) is discussed. The L3.Eu and L3.Tb complexes show very bright luminescence when photoexcited from the lowest-energy absorption band of the bipyridine chromophore. The luminescence quantum yields in an air-equilibrated water solution at room temperature are 0.10 and 0.21, respectively, despite the presence of one water molecule in the first coordination sphere of the metal ion. NMR data show that L3.Gd contains also one H2O molecule in the inner sphere. The proton longitudinal relaxivity, r1, of this complex is 3.4 s(-1) mM(-1) (0.47 T, 310 K) and the rotational correlation time, tau(R), is 57 ps (310 K). These values are comparable to those of the clinically used Gd-DTPA. Interestingly, the water exchange rate between the coordination site and the bulk solvent is slow (tau(M) = 3.5 micros at 310 K). The presence of water molecules in the second sphere and in rapid exchange with the solvent is discussed. Finally, it was found by luminescence and NMR experiments that these lanthanide complexes are stable versus transmetalation by several cations (especially Ca2+ and Zn2+) at physiological pH and have no interaction with blood proteins.  相似文献   

19.
The synthesis of a new ligand (1) containing a single phenanthroline (phen) chromophore and a flexibly connected diethylenetriamine tetracarboxylic acid unit (DTTA) as a lanthanide (Ln) coordination site is reported [1 is 4-[(9-methyl-1,10-phenantrol-2-yl)methyl]-1,4,7-triazaheptane-1,1,7,7-tetraacetic acid]. From 1, an extended series of water-soluble Ln.1 complexes was obtained, where Ln is Eu(III), Tb(III), Gd(III), Sm(III), Dy(III), Pr(III), Ho(III), Yb(III), Nd(III), and Er(III). The stoichiometry for the association was found 1:1, with an association constant K(A) > or = 10(7) s(-1) as determined by employing luminescence spectroscopy. The luminescence and photophysical properties of the series of lanthanide complexes were investigated in both H2O and D2O solutions. High efficiencies for the sensitized emission, phi(se), in air-equilibrated water were observed for the Ln.1 complexes of Eu(III) and Tb(III) in the visible region (phi(se) = 0.24 and 0.15, respectively) and of Sm(III), Dy(III), Pr(III), Ho(III), Yb(III), Nd(III), and Er(III) in the vis and/or near-infrared region [phi(se) = 2.5 x 10(-3), 5 x 10(-4), 3 x 10(-5), 2 x 10(-5), 2 x 10(-4), 4 x 10(-5), and (in D2O) 4 x 10(-5), respectively]. For Eu.1 and Tb.1, luminescence data for water and deuterated water allowed us to estimate that no solvent molecules (q) are bound to the ion centers (q = 0). Luminescence quenching by oxygen was investigated in selected cases.  相似文献   

20.
Xia Z  Zhuang J  Liao L 《Inorganic chemistry》2012,51(13):7202-7209
A novel red-emitting Ba(2)Tb(BO(3))(2)Cl:Eu phosphor possessing a broad excitation band in the near-ultraviolet (n-UV) region was synthesized by the solid-state reaction. Versatile Ba(2)Tb(BO(3))(2)Cl compound has a rigid open framework, which can offer two types of sites for various valence's cations to occupy, and the coexistence of Eu(2+)/Eu(3+) and the red-emitting luminescence from Eu(3+) with the aid of efficient energy transfer of Eu(2+)-Eu(3+)(Tb(3+)) and Tb(3+)-Eu(3+) have been investigated. Ba(2)Tb(BO(3))(2)Cl emits green emission with the main peak around 543 nm, which originates from (5)D(4) → (7)F(5) transition of Tb(3+). Ba(2)Tb(BO(3))(2)Cl:Eu shows bright red emission from Eu(3+) with peaks around 594, 612, and 624 nm under n-UV excitation (350-420 nm). The existence of Eu(2+) can be testified by the broad-band excitation spectrum, UV-vis reflectance spectrum, X-ray photoelectron spectrum, and Eu L(3)-edge X-ray absorption spectrum. Decay time and time-resolved luminescence measurements indicated that the interesting luminescence behavior should be ascribed to efficient energy transfer of Eu(2+)-Eu(3+)(Tb(3+)) and Tb(3+)-Eu(3+) in Ba(2)Tb(BO(3))(2)Cl:Eu phosphors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号