首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase singularities of plane beams focused by an aperture lens with astigmatism are studied. Numerical calculation results are given to illustrate the dependence of phase singularities of focused plane beams on the astigmatic coefficient and the Fresnel number. It is shown that as the Fresnel number gradually increases, the phase singularities shift not only towards the z-axis but also towards the geometrical focal plane in the presence of astigmatism, whereas the phase singularities move along the focal plane and always line in the focal plane for the astigmatism-free case. With increasing astigmatic coefficient, the phase singularities shift not only towards the z-axis but also far away from the geometrical focal plane.  相似文献   

2.
3.
The photoluminescence spectra of InAs quantum dots (QDs) embedded into four types of InxGa1−xAs/GaAs (x = 0.10, 0.15, 0.20 and 0.25) multi quantum well MBE structures have been investigated at 300 K in dependence on the QD position on the wafer. PL mapping was performed with 325 nm HeCd laser (35 mW) focused down to 200 μm (110 W/cm2) as the excitation source. The structures with x = 0.15 In/Ga composition in the InxGa1−xAs capping layer exhibited the maximum photoluminescence intensity. Strong inhomogeneity of the PL intensity is observed by mapping samples with the In/Ga composition of x ≥ 0.20-0.25. The reduction of the PL intensity is accompanied by a gradual “blue” shift of the luminescence maximum at 300 K as follows from the quantum dot PL mapping. The mechanism of this effect has been analyzed. PL peak shifts versus capping layer composition are discussed as well.  相似文献   

4.
The method for measuring second-order nonlinear optical coefficients based on well-known Z-scan is presented. The influence of linear absorption coefficients on normalized transmittance is discussed. Using this method, we obtained the second-order nonlinear coefficient d31(5%MgO:LiNbO3) = 4.5 × 10−12 m/v at 1064 nm, which agrees well with theoretical calculations and previous well-known values.  相似文献   

5.
The laser ablation of Ge and GaAs targets placed in water and ethanol was carried out using the fundamental radiation of nanosecond Nd:YLF laser. The results of preparation and the optical and nonlinear optical characterization of the Ge and GaAs nanoparticle suspensions are presented. The considerable shift of the band gap energy of the nanoparticles compared to the bulk semiconductors was observed. The distribution of nanoparticle sizes was estimated in the range of 1.5-10 nm on the basis of the TEM and spectral measurements. The nonlinear refractive indices and nonlinear absorption coefficients of Ge and GaAs nanoparticles were defined by the z-scan technique using second harmonic radiation of picosecond Nd:YAG laser (λ = 532 nm).  相似文献   

6.
7.
In this paper, Bose-Einstein soliton solutions of the nonlinear Schrödinger equation with time-dependent linear potential are considered. Based on the F-expansion method, we present a number of Jacobian elliptic function solutions. Particular cases of these solutions, where the elliptic function modulus equals 1 and 0, are various localized solutions and trigonometric functions, respectively. Specially, for Vext = ZF(T) = Z[mg + Hcos (ω1T)], we discussed the Bose-Einstein condensate trapped in the coupling external field with considering the effect of gravity; for F(T) = constant, it describes the wave (Langmuir or electromagnetic) in a linearly inhomogeneous plasma with cubic nonlinearly.  相似文献   

8.
We have studied photoluminescence of α-MnSe in the antiferromagnetic and paramagnetic phases. Two broad, possibly multi-component emission bands centred at about 1.53 and 1.66 eV are observed at 20 K. The frequencies and intensities of these bands show step-like shift in the vicinity of TN. On the basis of difference in peak energies at T=1.8 K and TN the d-p-d superexchange interaction in excited state is estimated to be J2g(exc)=0.918 meV.  相似文献   

9.
This paper describes the application of continuous-wave (CW) and tone-burst (TB) vibro-acoustography (VA) experiments for imaging a flawed composite plate. For both modes, the ultrasound frequency is set at f1 = 3 MHz and f2 = 3 MHz + ∣Δf∣. The plate was placed at the focus of the transducer and scanned point-by-point over an area of 60 mm by 50 mm on its frontal face with an increment step equal to 0.25 mm/pixel. The resulting acoustic emission amplitude at ∣Δ f∣ is recorded. For the CW mode the difference frequency was set at ∣Δf∣ = 12.9 kHz. For the TB mode, the burst-emitted signal was 100 μs long at a pulse repetition frequency (PRF) of 100 Hz corresponding to bursts of 300 cycles at 3 MHz, and the difference frequency was set at ∣Δf∣ = 44 kHz. The resulting VA images readily show the shape of the flaws. The images also reveal considerable detail of internal substructures such as the fibers used to reinforce the plate. However, the CW VA image shows an artifact caused by the effect of ultrasound standing waves established between the plate and the concave surface of the transducer, resulting in masking some of the flaws. On the other hand, the TB-VA image is free from such artifact. Despite some advantages of using TB-VA, there are some limitations related to this mode. Advantages and limitations of using the two modes are discussed.  相似文献   

10.
In this paper, extensive experimental results on broad-band double cladding Er3+-Yb3+ co-doped superfluorescent fiber sources (SFSs), characterizing their output power, mean wavelength, and bandwidth (BW) stability with variations of pump power, pump wavelength, and fiber temperature, have been reported. For a 55-cm fiber, SFS power from 3.7755 (maximum BW condition of more than 80 nm) to 9.1837 mW (maximum power condition, BW is about 34 nm) has been achieved. The SFS mean wavelength dependence on pump wavelength is highly pump temperature sensitive, and can be reduced to zero in a chosen pump temperature field. The intrinsic variation of the SFS mean wavelength λm with fiber temperature is also measured, and a linear variation from 15 to 45 °C with a slop of −0.053 nm/°C for Lf = 100 cm and −0.04 nm/°C for Lf = 55 cm is found.  相似文献   

11.
SrBi2−xPrxNb2O9 (x=0, 0.04 and 0.2) ceramics were prepared by a solid state reaction method. X-ray diffraction analysis indicated that single-phase layered perovskite structure ferroelectrics were obtained. A relaxor behavior of frequency dispersion was observed among Pr-doped SrBi2Nb2O9. The degree of frequency dispersion ΔT increased from 0 for x=0-7 °C for x=0.2, and the extent of relaxor behavior γ increased from 0.94 for x=0-1.45 for x=0.2. The substitution of Pr ions for Bi3+ ions in the Bi2O2 layers resulted in a shift of the Curie point to lower temperatures and a decrease in remanent polarization. In addition, the coercive field 2Ec reduced from 110 kV/cm for an undoped specimen to 90 kV/cm for x=0.2.  相似文献   

12.
Using temperature-dependent photoluminescence (PL) measurements, we report a comprehensive study on optical transitions in AlyInxGa1−xyN epilayer with target composition, x=0.01 and y=0.07 and varying epilayer thickness of 40, 65 and 100 nm. In these quaternary alloys, we have observed an anomalous PL temperature dependence such as an S-shape band-edge PL peak shift and a W-shape spectral broadening with an increase in temperature. With an increase in excitation power density, the emission peak from the AlInGaN epilayers shows a blue shift at 100 K and a substantial red shift at room temperature. This is attributed to the localization of excitons at the band-tail states at low temperature. Compared to 40 and 65 nm thick epilayers, the initial blue shift observed with low excitation power from 100 nm thick AlInGaN epilayer at room temperature is caused by the existence of deeper localized states due to confinement effects arising from higher In and Al incorporation. The subsequent red shift of the PL peak can be attributed by free motion of delocalized carriers that leads to bandgap renormalization by screening. Due to competing effects of exciton and free carrier recombination processes, such behavior of optical transitions leads to two different values of exponent ‘k’ in the fitting of PL emission intensity as a function of excitation power.  相似文献   

13.
The optical nonlinearity of styryl7 dye in ethanol solution at different concentrations has been studied using pulsed Nd:YAG laser at 532 nm as the source of excitation. The optical responses were characterized by measuring the intensity dependent refractive index (n2) of the medium using the Z-scan technique. The open aperture Z-scan trace of the dye in solution displayed saturable absorption. The closed aperture Z-scan trace of the dye exhibited a negative nonlinearity. The styryl7 dye at 1 mM concentration exhibited nonlinear refractive co-efficient n2 = −1.24 × 10−8 cm2/W, nonlinear absorption coefficient β = − 3.9 × 10−4 cm/W and real and imaginary parts of third-order nonlinear optical susceptibility χ3 = 3.26 × 10−6 esu in ethanol. These results showed that the dye has potential application in nonlinear optics.  相似文献   

14.
We calculate the radiation force that is exerted by a focused continuous-wave Gaussian beam of wavelength λ on a non-absorbing nonlinear particle of radius a ? 50λ/π. The refractive index of the mechanically-rigid particle is proportional to the incident intensity according to the electro-optic Kerr effect. The force consists of two components representing the contributions of the electromagnetic field gradient and the light scattered by the Kerr particle. The focused intensity distribution is determined using expressions for the six electromagnetic components that are corrected to the fifth order in the numerical aperture (NA) of the focusing objective lens. We found that for particles with a < λ/21.28, the trapping force is dominated by the gradient force and the axial trapping force is symmetric about the geometrical focus. The two contributions are comparable with larger particles and the axial trapping force becomes asymmetric with its zero location displaced away from the focus and towards the beam propagation direction. We study the trapping force behavior versus incident beam power, NA, λ, and relative refractive index between the surrounding liquid and the particle. We also examine the confinement of a Kerr particle that exhibits Brownian motion in a focused beam. Numerical results show that the Kerr effect increases the trapping force strength and significantly improves the confinement of Brownian particles.  相似文献   

15.
Nanocomposite films consisting of gold nanospheres or gold nanorods embedded in a silica matrix have been prepared using a hybrid deposition technique consisting of plasma-enhanced chemical vapor deposition of SiO2 and co-sputtering of gold, followed by annealing at 900 °C. Subsequent irradiation with 30 MeV heavy ions (Cu5+) was used to form gold nanorods. Linear and nonlinear optical properties of this material are closely related with the surface plasmon resonance in the visible. The nonlinear absorption coefficient (α2@532 nm) for the films containing gold nanospheres was measured by Z-scan and P-scan techniques, and it was found to be isotropic and equal to −4.8 × 10−2 cm/W. On the contrary, gold nanorods films exhibited two distinct surface plasmon resonance absorption bands giving rise to a strong anisotropic behavior, namely a polarization-dependent linear absorption and saturable absorption. Z-scan and P-scan measurements using various light polarization directions yielded nonlinear absorption coefficient (α2@532 nm) values varying from −0.9 × 10−2 cm/W up to −3.0 × 10−2 cm/W. Linearity of the P-scan method in the context of nanocomposite saturable absorption is also discussed.  相似文献   

16.
Jin Wang  Xiao-Wu Ni  Bing Gu  Hui-Tian Wang 《Optik》2012,123(16):1440-1443
We theoretically investigated on the focal shift of flat-topped beams (FTBs) passing through a lens system with or without aperture. We find that the position of on-axis peak intensity of focused FTBs strongly depends on the Fresnel number, the flatness order of FTBs, the truncation of the aperture, as well as the relative incident distance. The results indicate that the focal shift away from the geometrical focus of the focused FTBs appears when the relative incident distance does not equal to 1 and increases with the decreasing of the Fresnel number or the beam flatness order for both the apertured and unapertured lens systems. In the lens system with aperture, the focal shift effect decreases with the increase of the truncation parameter.  相似文献   

17.
Periodic Au nanoparticle arrays were fabricated on silica substrates using nanosphere lithography. The identical single-layer masks were prepared by self-assembly of polystyrene nanospheres with radius R = 350 nm. The structural characterization of nanosphere masks and periodic particle arrays was investigated by atomic force microscopy. The nonlinear optical properties of the Au nanoparticle arrays were determined using a single beam z-scan method at a wavelength of 532 nm with laser duration of 55 ps. The results show that periodic Au nanoparticle arrays exhibit a fast third-order nonlinear optical response with the nonlinear refractive index and nonlinear absorption coefficient being n2 = 6.09 × 10−6 cm2/kW and β = −1.87 × 10−6 m/W, respectively.  相似文献   

18.
We demonstrate high-efficiency diode-end-pumped multi-wavelength Nd:YAG lasers for continuous-wave and Q-switched operation. For the continuous-wave case, the Nd:YAG laser oscillates at 1.06 and 1.3 μm simultaneously; the maximum output power of 2.0 W (M2 = 1.3) and 3.6 W (M2 = 1.8) have been achieved at the incident pump power of 20.3 W, with the respective average slope efficiencies of 12.0% and 21.4%, for the lines of 1.06 and 1.3 μm, respectively. For the Q-switched operation, we achieve the average output power of 1.3 W (M2 = 2.7) at 1.06 μm and 2.0 W (M2 = 3.0) at 1.3 μm with the corresponding peak power of 10.2 and 4.2 kW under an incident pump power of 20.3 W.  相似文献   

19.
The nonmodulated and wavelength-modulated reflection spectra of CuGaS2 crystals for the polarization EIIc of 10 K are studied. The states n = 1, 2 and 3 of the excitons Γ4 (A-excitons) and n = 1, n = 2 of B- and C-excitons are found. The nonmodulated absorption spectra for the polarization Ec at 10 K have been studied. The states n = 1, 2 and 3 of Γ5 excitons are found. The main parameters of the A (Γ4, Γ5) and B, C exciton series at the energies of the longitudinal and transverse excitons Γ4 for the states n = 1 and n = 2, the effective masses of electrons and holes are determined. The photoluminescence peaks were observed at n = 3 and n = 4 of the excitons Γ5 in the luminescence spectra excited by the line 4880 Å of Ar+ laser. In the luminescence spectra the interference is found.  相似文献   

20.
Optical properties and phase composition of In-Au and Sn-Ag ultra-thin films grown by sequential evaporating and co-depositing of metals in a vacuum were investigated combining X-ray diffraction and spectroscopic ellipsometry methods. The atomic concentration ratios of bilayer and co-deposited samples were the same, i.e. In(Sn):Au(Ag) = 1:2. The XRD patterns indicated creation of AuIn, AuIn2, Au3In2, Au9In4 and Ag3Sn intermetallic compounds at room temperature. The effective complex dielectric functions of the composite layers, , were determined from ellipsometric quantities Ψ and Δ measured in a photon energy range of 0.6-6.5 eV. The free-carrier parameters (unscreened plasma frequency and free-carrier damping) and optical resistivity were evaluated using a semiclassical Drude-Lorentz model of the effective dielectric function. There was noticed a distinct influence of phase composition and surface morphology on the optical constants and conductivity of the samples: ρop changed from approximately 15 μΩ cm to 37 μΩ cm for Ag-Sn structures, composed of β-Sn and Ag3Sn phases, and from 21 μΩ cm to 83 μΩ cm for Au-In multiphase system. Lower resistivity demonstrated diffusive layers formed after deposition of an In(Sn) thin film on the noble metal underlayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号