首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on an experimental flow visualisation and digital particle image velocimetry investigation on forced jets exhausting from aspect ratio equal to three elliptic nozzles with exits inclined at 30° and 60°. Flow images show that shear layer instabilities and subsequent vortex roll-ups are formed parallel to the inclined nozzle exits at 30° incline and that rapid re-orientation of the vortex roll-ups occurs at 60° incline. Flow observations also show that strong axis-switching occurs in a non-inclined elliptic nozzle. However, 30° and 60° elliptic inclined nozzles produce significant distortions to and suppression of the axis-switching behaviour, respectively. As a result, flow stresses and turbulent kinetic energy distributions become increasingly asymmetric. Their coherency and magnitudes along the shorter nozzle lengths also vary significantly. This can be attributed to the dissimilar formations of vortex roll-ups and rib structures, as well as unequal mutual interactions between them as the incline-angle increases. Lastly, results also show that unlike circular inclined nozzles, elliptic inclined nozzles do not produce serpentine-shaped jet columns nor lead to significant lateral jet-spread at large incline-angles.  相似文献   

2.
Digital particle image velocimetry was used to study hybrid inclined nozzles formed by combining flat- and inclined-sections, where the latter are designed based on the aspect-ratios (AR = 2 and 4) of half-ellipses. Results show that AR2 nozzle exhibits flow behaviour largely similar to inclined nozzles with inclined vortex roll-ups moving away from the nozzle centerline. In contrast, AR4 nozzle leads to significantly more intense near-field flow behaviour caused by the sharper junctions, which prevent similar movement of the vortex roll-ups. Streamwise vortices are also observed to form off the peaks of inclined-sections which produce wider jets-spreads along the inclined-sections due to associated lateral jet fluid ejection, though there is a limit to the jet-spread increment. Lastly, both nozzles produce higher turbulent stress levels over those of the conventional circular nozzle, and vortex roll-up vectoring leads to higher turbulent stresses for the AR2 nozzle along certain measurement planes.  相似文献   

3.
An experimental study on elliptic nozzles with hybrid flat- and inclined-sections is reported here. The hybrid flat and inclined sections are imposed along either the major- or minor-plane of the nozzles (HIN?A and B nozzles respectively). For HIN?A, results show prevalent pairings between adjacent vortex filaments and induced vortex-loops in the immediate vicinity of the flat-section to produce coalesced vortex roll-ups. Once they detach entirely from the nozzle, they proceed to undergo flow changes resembling that of conventional elliptic jets. HIN?B also leads to near-field vortex pairings but produce discrete inclined vortex roll-ups instead, with accompanying delay in rib structure formations. The roles of induced vortex-loops are significantly more limited in the present elliptic HIN than circular HIN investigated previously, due to the dominance of elliptic braid vortices. HIN?A produces significantly larger centerline velocity decay, as well as higher turbulence levels in the near vicinity of the nozzle exit. Vectoring of axial jet momentum is more apparent for HIN?B, where cross-stream entrainment is also relatively larger. Half-jet width results also demonstrate that both nozzle types eventually produce elliptic jets that undergo axis-switching. Lastly, momentum thickness results suggest that the present nozzle lip-modifications significantly enhance mixing characteristics along the plane upon which they are imposed in both HIN?A and B.  相似文献   

4.
Direct and large-eddy simulations (DNS/LES) of accelerating round jets are used to analyze the effects of acceleration on the kinematics of vortex rings in the near field of the jet (x/D < 12). The acceleration is obtained by increasing the nozzle jet velocity with time, in a previously established (steady) jet, and ends once the inlet jet velocity is equal to twice its initial value. Several acceleration rates (α = 0.02–0.6) and Reynolds numbers (Re D = 500–20000) were simulated. Acceleration maps were used to make a detailed study of the kinematics of vortex rings in accelerating jets. One of the effects of the acceleration is to cause a number of new primary and secondary vortex merging events that are absent from steady jets. As the acceleration rate α increases, both the number of primary merging events between rings and the axial position where these take place decreases. The statistics for the speed of the starting ring that forms at the start of the acceleration phase for each simulation, agree well with the statistics for the “front” speed observed by Zhang and Johari (Phys Fluids 8:2185–2195, 1996). Acceleration maps and flow visualizations show that during the acceleration phase the near field coherent vortices become smaller and are formed at an higher frequency than in the steady jet, and their (mean) shedding frequency increases linearly with the acceleration rate. Finally, it was observed that the acceleration decreases the spreading rate of the jet, in agreement with previous experimental works.   相似文献   

5.
The present paper investigates experimentally and numerically a scaled-up micromixer that combines the mixing principles of focusing/diverging and flow split-and-recombine. The micromixer consists of two units called “cross” and “omega”, which are similar to a zigzag structure. The total length is 199.5 mm with a depth of 3 mm. Fluorescence technique is used in the present study for local quantitative measurements of concentration. Two syringe pumps are used to supply the working fluids at two inlets. The testing range of Reynolds number is at 1 ≤ Re ≤ 50. The results of the experiment, obtained by fluorescence technique, are supported by the mixing visualization. The experimental results show that the mixing efficiency decreases at Re ≤ 10 and increases at Re ≥ 10. This is caused by the change in mixing mechanism from mass-diffusion domination to mass-convection domination. After five cells, the mixing efficiency reaches to 70% at Re = 50. The computational fluid dynamics is applied to assist in the understanding of fluid characteristics in channels. The simulation has a good agreement with the experiment. Based on the simulation results, vortices are observed in the channels at high Re, which could stretch and fold the fluids to enhance the effect of mass-convection on mixing. This design has the potential to be developed for micromixers with high flow rates.  相似文献   

6.
The dye visualization experiments show that a dual leading-edge vortex (LEV) structure exists on the suction side of a simplified butterfly model of Papilio ulysses at α = 8°−12°. Furthermore, the results of particle image velocimetry (PIV) measurement indicate that the axial velocity of the primary (outer) vortex core reaches the lower extreme value while a transition from a “wake-like” to a “jet-like” axial velocity profile occurs. The work reveals for the first time the existence of dual LEV structure on the butterfly-like forward-sweep wing configuration.  相似文献   

7.
The ‘plug’ flow emerging from a long rotating tube into a large stationary reservoir was used in the experimental investigation of swirling jets with Reynolds numbers, Re = 600, 1,000 and 2,000, and swirl numbers, S = ΩR/U, in the range 0–1.1, to cover flow regimes from the non-rotating jet to vortex breakdown. Here Ω is the nozzle rotation rate, R is the radius of the nozzle exit, and U is the mean mass axial velocity. The jet was more turbulent and eddies shed faster at larger Re. However the flow criticality and shear layer morphology remained unchanged with Re. After the introduction of sufficient rotation, co-rotating and counter-winding helical waves replaced vortex rings to become the dominant vortex structure. The winding direction of the vortex lines suggests that Kelvin–Helmholtz and generalized centrifugal instability dominated the shear layer. A quantitative visualization study has been carried out for cases where the reservoir was rotating independently with S a  = Ω a R/U = ±0.35, ±0.51 and ±0.70 at Re = 1,000 and 2000, where Ω a is the rotation rate of the reservoir. The criterion for breakdown was found to be mainly dependent on the absolute swirl number of the jet, S. This critical swirl number was slightly different in stationary and counter-swirl surroundings but obviously smaller when the reservoir co-rotated, i.e. S c  = 0.88, 0.85 and 0.70, respectively. These results suggest that the flow criticality depends mainly on the velocity distributions of the vortex core, while instabilities resulting from the swirl difference between the jet and its ambient seem to have only a secondary effect.  相似文献   

8.
An experimental comparison was conducted for Re = 2,500, free elliptic and rectangular jets inclined at 30° and 60° along major or minor planes. Regardless of the jet base geometry, minor-plane inclined jets produced vortex roll-ups that remain inclined. In contrast, major-plane inclined jets produce significantly stronger vortex-roll-up turning behaviour. Interestingly, major-plane inclined rectangular jets exhibit strong vortex-overturning behaviour, where the vortex-roll-up inclination exceeds the 0° incline angle considerably. Vortex-turning extents and rates are compared between major-plane inclined elliptic and rectangular jets here and support present qualitative observations. Closer inspections reveal that the lack of axis-switching phenomenon in major-plane inclined rectangular jets allows vortex-overturning behaviour. In addition, jet centreline deflection is most sensitive in minor-plane inclined jets, where increasing the incline angle leads to a decrease and an increase in the elliptic and rectangular jet deflection, respectively.  相似文献   

9.
 The mean velocity field of a 30° inclined wall jet has been investigated using both hot-wire and laser Doppler anemometry (LDA). Provided that the nozzle aspect ratio is greater than 30 and the inclined wall angle (β) is less than 50°, LDA measurements for various β show that the reattachment length is independent of the nozzle aspect ratio and the nozzle exit Reynolds number (in the range 6670–13,340). There is general agreement between the reattachment lengths determined by LDA and those determined using wall surface oil film visualisation technique. The role of coherent structures arising from initial instabilities of a 30° wall jet has been explored by hot-wire spectra measurements. Results indicate that the fundamental vortex roll-up frequency in both the inner and outer shear layer corresponds to a Strouhal number (based on nozzle exit momentum thickness and velocity) of 0.012. The spatial development of instabilities in the jet has been studied by introducing acoustic excitation at a frequency corresponding to the shear layer mode. The formation of the fundamental and its first subharmonic has been identified in the outer shear layer. However, the development of the first subharmonic in the inner shear layer has been severely suppressed. Distributions of mean velocities, turbulence intensities and Reynolds shear stress indicate that controlled acoustic excitation enhances the development of instabilities and promotes jet reattachment to the wall, resulting in a substantially reduced recirculation flow region. Received: 24 November 1998/Accepted: 24 August 1999  相似文献   

10.
The present study addresses experimental results for investigating the details of the near field flow characteristics produced in an under-expanded, dual, coaxial, swirling jet. The under-expanded swirling jet is discharged from a sonic inner nozzle. An outer annular nozzle produces co- and counter-swirling streams relative to the inner primary swirling jet. The interaction between both the outer annular swirling stream and inner under-expanded swirling jet is quantified by impact and static pressure measurements, and visualized by using the shadowgraph method. Experiments are performed for several different pressure ratios. The results show that the outer secondary co-swirling jet significantly changes the structure of the inner under-expanded swirling jet, such as the shock structures and the recirculation region generated at the jet axis. The effect of the outer secondary stream on the major structures of the inner primary swirling jet is strongly dependent on the pressure ratio of the inner swirling jet, regardless of the swirl direction of the outer stream.Received: 17 May 2004, Accepted: 27 September 2004, Published online: 26 November 2004[/PUBLISHED]H.D. Kim: Correspondence to  相似文献   

11.
Passive control of jet flows in order to enhance mixing and entrainment is of wide applicative interest. Our purpose is to develop new air diffusers for HVAC systems, by using lobed geometry nozzles, in order to ameliorate users the thermal comfort. Two turbulent 6-lobed air jets with and without lobe deflection angles were studied experimentally and compared with a reference circular jet having the same initial Reynolds number. The main objective was to analyze the modifications occurring in the vortex dynamics of the flow, firstly by replacing a circular tube with a straight lobed tube, and secondly by a lobed tube having a double inclination of the lobes. Rapid visualizations of the flows and hot-wire measurements of the streamwise velocity spectra allow understanding the vortex roll-up mechanisms. Unlike the circular jet, where the primary rings are continuous, the Kelvin–Helmholtz vortices in the lobed jet flows were found to be discontinuous. The resulting “ring segments” detach at different frequencies whether they are shed in the lobe troughs or at the lobe sides. One explanation relies on the strong variation of the exit plane curvature. Additionally, a speculative scenario of the vortical dynamics is advanced by the authors. The discontinuous nature of the K–H vortices enables the development of secondary streamwise structures, non-influenced by the passage of the primary structures as in the case of the circular jet. Thus, the momentum flux transport role played by the streamwise structures is rendered more efficient and leads to a spectacular increase in the entrainment rate in the initial region. The amount of fluid being entrained in the lobed jet by the streamwise structures is drastically amplified by the double inclination of the nozzle exit boundary.  相似文献   

12.
An LDA technique and phase-averaging analysis were used to study unsteady precessing flow in a model vortex burner. Detailed measurements were made for Re=15,000 and S=1.01. On the basis of the analysis of phase-averaged data and vortex detection by the λ2-technique of Joeng and Hussain (1995), three precessing spiral vortex structures were identified: primary vortex (PV), inner secondary vortex (ISV), and outer secondary vortex (OSV). The PV is the primary and most powerful structure as it includes primary vorticity generated by the swirler; the ISV and OSV are considered here as secondary vortical structures. The jet breakdown zone is the conjunction of a pair of co-rotating co-winding spiral vortices, PV and ISV. The interesting new feature described is that the secondary vortices form a three-dimensional vortex dipole with a helical geometry. The effect of coupling of secondary vortices was suggested as a mechanism of enhanced stability reflected in their increased axial extent.  相似文献   

13.
Vortex rings were generated by driving pistons within circular cylinders of inner diameter D = 72.8 mm at a constant velocity U 0 over a distance L = D. The Reynolds number, U 0 L/(2ν), was 2500. The flow downstream of circular and inclined exits was examined using volumetric 3-component velocimetry (V3V). The circular exit yields a standard primary vortex ring that propagates downstream at a constant velocity and a lingering trailing ring of opposite sign associated with the stopping of the piston. By contrast, the inclined nozzle yields a much more complicated structure. The data suggest that a tilted primary vortex ring interacts with two trailing rings; one associated with the stopping of the piston, and the other associated with the asymmetry of the cylinder exit. The two trailing ring structures, which initially have circulation of opposite sign, intertwine and are distorted and drawn through the center of the primary ring. This behavior was observed for two inclination angles. Increased inclination was associated with stronger interactions between the primary and trailing vortices as well as earlier breakdown.  相似文献   

14.
The evolution of wake structures and variation of the forces on a flat plate in harmonic oscillatory and in-line combined flows are obtained numerically by improved discrete vortex method. For the oscillatory oncoming flow cases, wyenKc number varies from 2 to 40, the vortex pattern changes from a “harmonic wave” shaped (in a range of smallKc number) to a slight inclined “harmonic wave” shaped (in a range of moderateKc numbers), then to inclined vortex clusters with an angle of 50° to the oncoming flow direction (atKc=20), at last, asKc number becomes large, the vortex pattern is like a normal Karman vortex street. The well predicted drag and inertia force coefficients are obtained, which are more close to the results of Keulegan & Carpenter's experiment as compared with previous vortex simulation by other authors. The existence of minimum point of inertia force coefficientC m nearKc=20 is also well predicted and this phenomenon can be interpreted according to the vortex structure. For steady-oscillatory in-line combined flow cases, the vortex modes behave like a vortex street, exhibit a “longitudinal wave” structure, and a vortex cluster shape corresponding to the ratios ofU m toU 0 which are ofO (10−1)O(1) andO(10), respectively. The effect on the prediction of forces on the flat plate from the disturbance component in a combined flow has been demonstrated qualitatively. In addition to this, the lock in phenomenon of vortex shedding has been checked. The project supported by National Natural Science Foundation of China & LNM, Institute of Mechanics, CAS  相似文献   

15.
Particle image velocimetry measurements and time-resolved visualization are used for the reconstruction of the Kelvin–Helmholtz vortex passing in the near field of a round jet and of a lobed jet. For the round jet, the entrainment is produced in the braid region, where streamwise structures develop. In the Kelvin–Helmholtz ring, entrainment is dramatically affected by the attenuation of the streamwise structures. As for the lobed jet, the special geometry introduces a transverse shear leading to a breakdown of the Kelvin–Helmholtz structures into “ring segments.” Streamwise structures continuously develop at the resulting discontinuity regions and control the lobed jet self-induction. In this case, the entrainment rate is less affected by the primary structures dynamics.  相似文献   

16.
Characteristics of high Mach number compressible vortex ring generated at the open end of a short driver section shock tube is studied experimentally using high-speed laser sheet-based flow visualization. The formation mechanism and the evolution of counter rotating vortex ring (CRVR) formed ahead of the primary vortex ring are studied in details for shock Mach number (M) 1.7, with different driver section lengths. It has been observed that the strength of the embedded shock, which appears at high M, increases with time due to the flow expansion in the generating jet. Strength of the embedded shock also varies with radius; it is strong at smaller radii and weak at larger radii; hence, it creates a velocity gradient ahead of the embedded shock. At critical Mach number (M c ≥ 1.6), this shear layer rolls up and forms a counter rotating vortex ring due to Biot-Savart induction of the vortex sheet. For larger driver section lengths, the embedded shock and the resultant shear layer persists for a longer time, resulting in the formation of multiple CRVRs due to Kelvin–Helmholtz type instability of the vortex sheet. CRVRs roll over the periphery of the primary vortex ring; they move upstream due to their self-induced velocity and induced velocity imparted by primary ring, and interact with the trailing jet. Formation of these vortices depends strongly upon the embedded shock strength and the length of the generating jet. Primary ring diameter increases rapidly during the formation and the evolution of CRVR due to induced velocity imparted on the primary ring by CRVR. Induced velocity of CRVR also affects the translational velocity of the primary ring considerably.  相似文献   

17.
3-D evolution of Kármán vortex filaments and vortex filaments in braid regions in the turbulent wake of a 2-D circular cylinder is investigated numerically based on inviscid vortex dynamics by analyzing the response of the initially 2-D spanwise vortex filaments to periodic spanwise disturbance of varying magnitude, wavelength and initial phase angles. Our results reveal a kind of 3-D vortex system in the wake which consists of large scale horseshoe-shaped vortices and small scale γ-shaped vortex filaments as well as vortex loops. The mechanism and the dynamic process about the generation of streamwise vortical structure and the 3-D coherent structure are reported. currently published in the Chinese Edition of Acta Mechanica Sinica, Vol.25, No.3, 1993 The project supported by National Natural Science Foundation of China and the National Basic Research Project “Nonlinear Science”  相似文献   

18.
 The entrainment rates of vertical and inclined jets impinging on a stratified interface are measured in water tank experiments. At moderate Richardson number, the entrainment rate of the vertical jet is proportional to Ri -1/2, independent of Reynolds number. The inclined jets are tilted at 15° from the vertical. In one case, the jet nozzle is rotated about a vertical axis, so that the inclined jet precesses, while in the other, it is stationary. The inclined jets entrain at a rate proportional to Ri -3/2, whether precessing or not. This behavior is consistent with a new model of stratified entrainment which accounts for vortex persistence. Received: 15 October 1996/Accepted: 19 December 1996  相似文献   

19.
The aerodynamic force and flow structure of NACA 0012 airfoil performing an unsteady motion at low Reynolds number (Re=100) are calculated by solving Navier-Stokes equations. The motion consists of three parts: the first translation, rotation and the second translation in the direction opposite to the first. The rotation and the second translation in this motion are expected to represent the rotation and translation of the wing-section of a hovering insect. The flow structure is used in combination with the theory of vorticity dynamics to explain the generation of unsteady aerodynamic force in the motion. During the rotation, due to the creation of strong vortices in short time, large aerodynamic force is produced and the force is almost normal to the airfoil chord. During the second translation, large lift coefficient can be maintained for certain time period and , the lift coefficient averaged over four chord lengths of travel, is larger than 2 (the corresponding steady-state lift coefficient is only 0.9). The large lift coefficient is due to two effects. The first is the delayed shedding of the stall vortex. The second is that the vortices created during the airfoil rotation and in the near wake left by previous translation form a short “vortex street” in front of the airfoil and the “vortex street” induces a “wind”; against this “wind” the airfoil translates, increasing its relative speed. The above results provide insights to the understanding of the mechanism of high-lift generation by a hovering insect. The project supported by the National Natural Science Foundation of China (19725210)  相似文献   

20.
The periodic formation of vortex rings in the developing region of a round jet subjected to high-amplitude acoustic forcing is investigated with High-Speed Particle Image Velocimetry. Harmonic velocity oscillations ranging from 20 to 120% of the mean exit velocity of the jet was achieved at several forcing frequencies determined by the acoustic response of the system. The time-resolved history of the formation process and circulation of the vortex rings are evaluated as a function of the forcing conditions. Overall, high-amplitude forcing causes the shear layers of the jet to breakup into a train of large-scale vortex rings, which share many of the features of starting jets. Features of the jet breakup such as the roll-up location and vortex size were found to be both amplitude and frequency dependent. A limiting time-scale of t/T ≈ 0.33 based on the normalized forcing period was found to restrict the growth of a vortex ring in terms of its circulation for any given arrangement of jet forcing conditions. In sinusoidally forced jets, this time-scale corresponds to a kinematic constraint where the translational velocity of the vortex ring exceeds the shear layer velocity that imposes pinch-off. This kinematic constraint results from the change in sign in the jet acceleration between t = 0 and t = 0.33T. However, some vortex rings were observed to pinch-off before t = 0.33T suggesting that they had acquired their maximum circulation. By invoking the slug model approximations and defining the slug parameters based on the experimentally obtained time- and length-scales, an analytical model based on the slug and ring energies revealed that the formation number for a sinusoidally forced jet is L/D ≈ 4 in agreement with the results of Gharib et al. (J Fluid Mech 360:121–140, 1998).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号