首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Recycling high speed counter-current chromatography (HSCCC) was successfully applied to resolution of (R, S)-naproxen (NAP) using hydroxypropyl-β-cyclodextrin (HP-β-CD) as chiral selector. The two-phase solvent system composed of n-hexane-ethyl acetate-0.1 mol L(-1) phosphate buffer solution with pH=2.67 (8:2:10, v/v/v) was selected. Influence factors for the chiral separation process were investigated, including concentration of HP-β-CD, equilibrium temperature and pH of aqueous phase. Suitable elution mode was selected for HSCCC enantioseparation of (R, S)-NAP. Under optimum separation conditions, 29 mg of (R, S)-NAP was separated using preparative recycling HSCCC with the molar ratio HP-β-CD/NAP racemate 83:1. Technical details for recycling elution mode were discussed as for chiral HSCCC separation. The purities of both (S)-NAP and (R)-NAP were over 99.5% as determined by HPLC. Enantiomeric excess of (S)-NAP and (R)-NAP reached 99.4%. Recovery for NAP enantiomers from HSCCC fractions was 82-89%, yielding 13 mg of (S)-NAP and 12 mg of (R)-NAP.  相似文献   

2.
Mohr S  Pilaj S  Schmid MG 《Electrophoresis》2012,33(11):1624-1630
In recent years, cathinone derivatives have entered the global drug market and caused serious social problems in many European countries. Modification of the basic structure of cathinone leads to a multitude of derivatives, including the most popular representative mephedrone. All those substances contain a stereogenic center and therefore two isoforms exist. As it is the case with many chiral active pharmaceutical ingredients, even the pharmacological effect of the enantiomers of those psychoactive compounds may differ. During this research, an easy-to-prepare chiral capillary zone electrophoresis method for the enantioseparation of a set of 19 cathinone derivatives was developed. Testing different types of cyclodextrin (CD), including native-β-CD, carboxymethyl-β-CD, 2-hydroxypropyl-β-CD, sulfated-β-CD, and native γ-CD, best results were obtained with the negatively charged sulfated-β-CD. The effect of the CD concentration, the temperature, and the addition of ACN to the BGE on the enantioseparation is shown by three model compounds. Under optimal conditions, using 20 mg/mL sulfated-β-CD in 50 mM ammonium acetate buffer pH?= 4.5 containing 10% v/v ACN at a cassette temperature of 40°C and with an applied voltage of 20 kV, all derivatives except methedrone were resolved in their enantiomers within 20 min.  相似文献   

3.
Chiral separation method development is usually very time-consuming due to the diversity in chemical structures of pharmaceutical drug substances as well as the suitable separation conditions and the problem to choose the appropriate chiral selector. This paper shows capillary zone electrophoresis (CZE) which was developed for chiral separation of a basic compound - rivastigmine (RIV) using 30 cm × 50 μm i.d. polyacrylamide (PAA)-coated fused-silica capillary (effective length 20 cm), amine-modified phosphate buffer of pH 2.5 and sulfated-β-CD (S-β-CD) as chiral selector. Other selected native or derivatized cyclodextrins (CDs) were also tested: β-CD (5, 30 mM), carboxymethyl-β-CD (5, 30 mM), dimethyl-β-CD (15 mM), hydroxypropyl-β-CD (5, 30 mM), hydroxypropyl-α-CD (5, 30 mM) and hydroxypropyl-γ-CD (5, 30 mM). Complete enantiomeric separation of RIV was achieved at 20 kV, 18 °C and detection at 200 nm within 8 min with R.S.D. for the absolute migration time reproducibility of less than 2.1%. Rectilinear calibration range was 5.0-500.0 μM of each enantiomer (r = 0.9994-0.9995). The CZE method proposed was used for the control of chiral purity of pharmaceutically active S-RIV and for the analysis of Exelon caps preparation.  相似文献   

4.

Capillary zone electrophoresis employing a dual cyclodextrin (CD) system, consisting of anionic sulfobutylether-β-CD and native β-CD, was developed for the simultaneous chiral separation of four H1-antihistamine racemates (brompheniramine, chlorpheniramine, cetirizine and promethazine). A cost-effective screening using different native and derivatized, neutral and ionized CDs as chiral selectors was performed to find suitable derivatives for the dual CD system. Under the optimized conditions consisting of 25 mM phosphate background electrolyte at pH 7.0, a combination of 15 mM SBE-β-CD and 10 mM β-CD as chiral selectors, +25 kV applied voltage and 20 °C system temperature, the baseline chiral separation of all racemates was accomplished in less than 8 min. The method proved to be suitable for routine analysis, since it provided satisfactory results during sensitivity, linearity and repeatability studies.

  相似文献   

5.
采用毛细管电泳法和高效液相色谱法直接拆分2,2′-二羟基-1,1′-联二萘-3,3′-二甲酸(HBNC)对映体.以四种不同的β-环糊精为手性添加剂,考察环糊精的种类与浓度、缓冲液pH值及浓度、分离电压、温度等因素对HBNC分离的影响.结果表明:采用10 mmol/L磺丁基醚-β-环糊精+20 mmol/L磷酸盐缓冲液(pH=7.0),20 kV分离电压,HBNC对映体在20 min内达到基线分离,分离度达到3.31.采用(S)-叔-亮氨酸基-(S)-1-(α-萘基)乙胺手性柱,正己烷-乙醇-三氟乙酸(97∶3∶0.2,V/V)流动相,HBNC对映体在40 min内也基本达到基线分离.  相似文献   

6.
Capillary electrochromatography (CEC) is reported for monitoring the extraction of the pyrethroid pesticides fenpropathrin, fenvalerate and fluvalinate by SFE using supercritical CO2. The optimum SFE conditions obtained for the pyrethroid pesticides from spiked cellulose matrix, were for fenpropathrin 300 atm and 70°C, fenvalerate 300 atm and 60°C and for fluvalinate 200 atm and 75°C. Extracts collected in methanol were subjected to analysis by CEC on a 30 cm × 75 μm i.d. fused silica capillary packed with 5 μm Hypersil ODS (21 cm packed length). Electrochromatograms of the three pyrethroid pesticides were obtained in order of elution thiourea (as the EOF marker), fenpropathrin, fenvalerate and fluvalinate, with mobile phase ACN-25 mM NaH2PO4 pH 8.3 (85 : 15), voltage 25 kV, electrokinetic injection 5 kV, 3 sec and detection at 200 nm. The SFE recoveries were > 80% for all three solutes. In addition, enantioseparation of the pyrethroid pesticides was investigated using Me-β-CD and HP-β-CD as chiral additives. The enantioseparation of fenpropathrin was optimised to a methanol-25 mM Tris pH 8.3 mobile phase (75 : 25) containing 70 mM Me-β-CD.  相似文献   

7.
The enantiomeric purity determination of a synthetic intermediate of new 3,4-dihydro-2,2-dimethyl-2H-1-benzopyrans, i.e. 4-amino-2,2-dimethyl-6-ethoxycarbonylamino-3,4-dihydro-2H-1-benzopyran, was successfully carried out using an anionic cyclodextrin (CD) derivative combined with a chiral ionic liquid (IL). In order to obtain high resolution and efficiency values, the addition of a chiral IL, i.e. ethylcholine bis(trifluoromethylsulfonyl)imide (EtChol NTf2), to the background electrolyte containing heptakis(2,3-di-O-methyl-6-O-sulfo)-β-CD (HDMS-β-CD) was found to be essential. A simultaneous increase in separation selectivity and enantioresolution seems to indicate a synergistic effect of HDMS-β-CD and EtChol NTf2. The best enantioseparation of the key intermediate was achieved using a methanolic solution of 0.75 M formic acid, 10 mM ammonium formate, 1.5 mM HDMS-β-CD and 5 mM EtChol NTf2. Levamisole was selected as internal standard. The optimized conditions allowed the determination of 0.1% of each enantiomer in the presence of its stereoisomer using the method of standard additions. The NACE method was then fully validated with respect to selectivity, response function, trueness, precision, accuracy, linearity and limits of detection and quantification.  相似文献   

8.
制备了β-环糊精-6-单取代氨乙基氨丙基三甲氧基硅烷手性单体(β-CD siloxane),以该手性单体和1,2-双(三乙氧基硅基)乙烷(BTEE)为硅源,十六烷基三甲基溴化铵(CTAB)为模板,采用水热合成法直接制得孔道中含有环糊精的手性介孔材料。 再对该产物进行苯基异氰酸酯化得到杂合β-环糊精的有机-无机介孔分离材料(β-CD PMOs)。 在正相HPLC及反相HPLC条件下,分别考察该填料柱对常见含氮碱性药物对映体的拆分效果。 结果表明,不管在反相或正相分离模式下,采用常见的流动相在pH=4.15条件实现了11个碱性药物的手性分离,手性选择因子(α)最高可达2.42。 孔道中直接杂合β-环糊精的手性固定相制备方法简便、快速和成本低,进一步优化成孔条件后有一定应用前景。  相似文献   

9.
Lin CE  Lin SL  Cheng HT  Fang IJ  Kuo CM  Liu YC 《Electrophoresis》2005,26(21):4187-4196
Migration behavior and enantioseparation of racemic hydrobenzoin and structurally related compounds, including benzoin and benzoin methyl ether, in CZE with a dual CD system consisting of heptakis-(2,3-dihydroxy-6-O-sulfo)-beta-CD (SI-S-beta-CD) and beta-CD as chiral selectors in the presence and absence of borate complexation at pH 9.0 were investigated. The results indicate that enantioseparation of hydrobenzoin is mainly governed by CD complexation of hydrobenzoin-borate complexes with SI-S-beta-CD when SI-S-beta-CD concentration is relatively high. Whereas CD complexation of hydrobenzoin-borate complexes with beta-CD plays a significant role in enantioseparation when SI-S-beta-CD concentration is comparatively low. The (S,S)-enantiomer of the hydrobenzoin-borate complex was found to interact more strongly than the corresponding (R,R)-enantiomer with both SI-S-beta-CD and beta-CD. These two types of CD show the same chiral recognition pattern, but they exhibit opposite effects on the mobility of the enantiomers of hydrobenzoin-borate complexes. Enantiomer migration reversal of hydrobenzoin occurred in the presence of borate complexation when varying the concentration of beta-CD, while keeping SI-S-beta-CD at a relatively low concentration. Binding constants of the enantiomers of benzoin-related compounds to beta-CD and those of hydrobenzoin-borate complexes to SI-beta-CD were evaluated; the mobility contributions of all complex species to the effective mobility of the enantiomers of hydrobenzoin as a function of beta-CD concentration in a borate buffer were analyzed. In addition, comparative studies on the enantioseparation of benzoin-related compounds with SI-S-beta-CD and with randomly sulfate-substituted beta-CD were made.  相似文献   

10.
The enantiomeric separation of chiral pharmaceuticals was investigated using dual systems with mixtures of cyclodextrin derivatives. The dual cyclodextrin systems, consisting of one highly-sulfated (α-, β-, and γ-HSCD) and one neutral cyclodextrin, i.e. either heptakis (2,3,6-tri-O-methyl)-β-CD (TMCD), heptakis (2,6-di-O-methyl)-β-CD (DMCD) or hydroxypropyl-β-CD (HPCD), are tested on 25 pharmaceutical compounds with different acid-basic properties (16 basics, 8 acids and 1 neutral). The influence on the separation of the type and concentration of neutral CD in highly-sulfated cyclodextrins-based dual selector systems, is investigated. For 11 of 16 basic compounds, a better separation is obtained with the CD mixtures compared to the use of only a highly-sulfated CD. Mixtures with TMCD give better results than those with DMCD and HPCD. Results showed that dual CD systems are useful to achieve and to optimise chiral separations of compounds not (sufficiently) separated with HSCDs alone. For example, ibuprofen was not resolved with α-, β- or γ-HSCD, but could be separated with the mixture 25 mM TMCD and 5% HS-β-CD. Based on the obtained results, a dual CD systems based separation strategy is defined.  相似文献   

11.
Three chiral stationary phases were prepared by dynamic coating of sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD) with different degrees of substitution, onto strong anion‐exchange stationary phases. The enantioselective potential and stability of newly prepared chiral stationary phases were examined using a set of structurally different chiral analytes. Measurements were performed in RP‐HPLC. Mobile phases consisted of methanol/formic acid, pH 2.10, and methanol/10 mM ammonium acetate buffer, pH 4.00, in various volume ratios. SBE‐β‐CDs with degrees of substitution (DS) 4, 6.3, and 10 proved suitable for the enantioseparation of 14, 11, and 8 analytes, respectively. The SBE‐β‐CD DS 4 based chiral stationary phase enabled the enantioseparation of the nearly all basic and neutral compounds. Chiral stationary phases with higher sulfobutylether‐β‐cyclodextrin substitution (especially DS 10) yielded higher enantioresolution values for acidic compounds.  相似文献   

12.
The complexation of the triptolide PG490 and its succinate derivative PG490-88Na with various cyclodextrins was studied using three complementary techniques: affinity capillary electrophoresis (ACE), isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR). The apparent binding constants of the complexes formed between the drugs and 8 CDs (α-CD, β-CD, γ-CD, HP-α-CD, HP-β-CD, HP-γ-CD, CM-β-CD and amino-β-CD) were determined by ACE through linear Scott's plots. The apparent and averaged binding constants of the complexes formed between PG490-88 and β-CD, γ-CD, HP-α-CD, HP-β-CD or HP-γ-CD are contained in the narrow range 135-167 M(-1). For the anionic CM-β-CD and cationic amino-β-CD, these constants are 38 and 278 M(-1), respectively, which is in accordance with electrostatic repulsions or attractions with the succinate moiety. ITC and NMR investigations for the binding constants determinations were performed for 2 CDs allowing high complexation: HP-β-CD and amino-β-CD. The three techniques provided similar results. ITC and NMR, in contrast to ACE, allowed to study the complexes formed between the neutral compound PG490 and neutral cyclodextrins. A more advanced characterization of the PG 490-88Na/amino-β-CD complex, which displays the highest apparent binding constant, was undertaken using NMR spectroscopy. The 1:1 stoichiometry of the complex was established by (1)H NMR 1D and selective 1D TOCSY experiments using the continuous variation method. Moreover, the 1D and 2D ROESY experiments revealed the inclusion of the isopropyl moiety of the triptolide derivative in the hydrophobic CD cavity. Altogether, the data provide strong evidences that the two triptolide compounds can be efficiently complexed with CD.  相似文献   

13.
R-solriamfetol is a recently approved drug used for the treatment of excessive sleepiness associated with narcolepsy and sleep apnea. Herein, a capillary electrophoretic method was developed, enabling the simultaneous analysis of the API and its S-enantiomer in addition to the enantiomers of its major impurity phenylalaninol. Twenty-nine different cyclodextrins (CDs), including native, neutral, and charged ones were screened as potential chiral selectors, and the best results were obtained with sulfated CDs. Randomly sulfated-β-CD exhibited outstanding enantioresolution, the peaks of phenylalaninol enantiomers inserted between the two peaks of solriamfetol enantiomers, while sulfated-γ-CD (S-γ-CD) showed remarkable resolution values in a much shorter analysis time with the optimal enantiomer migration order. Among the single isomer sulfated CD derivatives, substituent dependent enantiomer migration order reversal could also be observed in the case of heptakis(6-O-sulfo)-β-CD (HS-β-CD) or heptakis(2,3-O-dimethyl-6-O-sulfo)-β-CD (HDMS-β-CD) with R-,S-solriamfetol, and heptakis(2,3-O-diacetyl-6-O-sulfo)-β-CD (HDAS-β-CD) resulting S-,R-solriamfetol migration order. The sulfated-γ-CD system was chosen for method optimization applying orthogonal experimental design. The optimized method (45 mM Tris-acetate buffer, pH 4.5, 4 mM S-γ-CD, 21°C, +19.5 kV) was capable for the baseline separation of solriamfetol and phenylalaninol enantiomers within 7 min. The optimized method was validated according to the ICH guidelines and successfully applied for the analysis of pharmaceutical preparation (Sunosi® 75 mg tablet), thus it may serve as a routine procedure for the laboratories of regulatory authorities as well as in Pharmacopoeias.  相似文献   

14.
Sohajda T  Hu WH  Zeng LL  Li H  Szente L  Noszál B  Béni S 《Electrophoresis》2011,32(19):2648-2654
An aqueous capillary electrophoretic method was developed for chiral analysis of the novel anti-diabetic drug, sitagliptin. The acid-base profiling of the analyte was carried out using both capillary electrophoresis and nuclear magnetic resonance pH titrations. The apparent complex stability and chiral separation properties were investigated with 30 different cyclodextrins under acidic conditions. The effect of concentration and pH of the BGE, temperature of the capillary, and the type and concentration of the chiral selector on the enantiomer resolution were thoroughly investigated. The effects of dual cyclodextrin systems on separation were also extensively studied. Complete separation of racemic sitagliptin with good resolution (R(S)=2.24) was achieved within a short time (15 min) with optimized parameters (10°C, pH=4.4, 40 mM phosphate buffer) of a sulfobutylether-β-cyclodextrin (averaged degree of substitution ~4) and native β-cyclodextrin dual system. The averaged stoichiometry of the inclusion complex was determined using the Job plot method with both (1)H and (19)F NMR experiments and resulted in a 1:1 complex. The structure of the inclusion complex was elucidated using 2-D ROESY NMR experiments.  相似文献   

15.
Inclusion complexes using α-, β-, γ-, and hydroxypropyl-β-CD (HP-β-CD) were produced with the antibiotic enrofloxacin, with the aim of increasing its solubility by complexation. Phase solubility diagrams were obtained, to confirm the formation of inclusion complexes, and to determine the solubility enhancement and stability constant of each complex. Enrofloxacin inclusion in β-CD showed the highest value of the complex stability constant (35.56?mmol?L?1), but the greatest increase in solubility was obtained using HP-β-CD reaching a 1258% increase over enrofloxacin solubility in the absence of CD. The order of highest enrofloxacin solubility achieved was: HP-β-CD?>?α-CD?>?γ-CD?>?β-CD. In addition, formation of complexes was confirmed by differential scanning calorimetry and thermogravimetry, applied to the complexes obtained by the kneading technique. The influence of citric acid, alone or as an adjunct of β-CD, on the solubility of enrofloxacin was also determined. A solution of 15?mmol?L?1 citric acid dissolved 10?g?L?1 of enrofloxacin, but a gradual increase in β-CD concentration in the presence of citric acid did not increase the degree of solubilization of enrofloxacin.  相似文献   

16.
Separation of etodolac enantiomers, which exhibit different biological activity and pharmacokinetic profiles, has been achieved using the randomly substituted (2-hydroxy)propyl-beta-cyclodextrin (HP-beta-CD) as chiral selector in capillary electrophoresis. The selection of this CD was made after screening of different CD derivatives of neutral and anionic nature. The effect on the enantioresolution of the buffer concentration and of the degree of substitution (DS) and concentration of the CD as well as of instrumental parameters, such as the capillary temperature and the separation voltage, were studied. The highest resolution of etodolac enantiomers was around 2.5 using 100 mM phosphate buffer (pH 7.0) with 20 mM HP-beta-CD (DS approximately 4.2) and UV detection at 225 (10) nm with a reference wavelength at 360 (50) nm. Validation of the chiral method in terms of selectivity, linearity, precision (instrumental repeatability, method repeatability, intermediate precision), and the limits of detection and quantitation allowed to evaluate its quality to the analysis of etodolac enantiomers in different pharmaceutical preparations containing racemic etodolac.  相似文献   

17.
分别以2种天然环糊精(β、γ-环糊精)、2种常用的电中性环糊精衍生物(羟丙基-β-环糊精、二甲基-β-环糊精)和3种新型荷电环糊精衍生物(高取代磺酸基α、β、γ-环糊精)作为毛细管区带电泳手性添加剂,研究了环糊精的类型对6种手性药物对映体分离的影响.2种天然环糊精对所研究的手性药物均无手性识别能力,而环糊精经过衍生化后手性识别能力得到了很大的提髙,尤其是高取代磺酸基β-环糊精使6种手性药物均得到了基线分离.还考察了缓冲溶液的pH值和有机添加剂对手性分离的影响.  相似文献   

18.
Three charged substituted beta-cyclodextrins (beta-CDs), sulfobutylether-beta-(SBE-beta-CD), degree of substitution (DS) 4 and 7), and sulfated-beta-(S-beta-CD) cyclodextrins, were compared as chiral additives in capillary electrophoresis for the enantiomeric separation of basic spirobenzopyran derivatives (pKa 9.9) which differ from each other by an N-alkyl group. The number of sulfobutylether groups attached to the cyclodextrin moiety significantly influences the enantioseparation of the basic drugs. SBE-beta-CD (DS 7) which is more strongly bound to cationic analyte than SBE-beta-CD (DS 4.6), requires smaller concentrations to achieve the same resolution. Besides, better enantioresolutions were obtained with S-beta-CD rather than with SBE-beta-CDs though higher concentrations are required, which led to high current values. However, both pairs of enantiomers cannot be resolved using S-beta-CD while SBE-beta-CDs make it possible to resolve simultaneous enantioseparation of such solutes slightly differing in hydrophobicity. This supports the hypothesis that hydrophobic interactions (outside of the CD cavity) between the butyl group attached to SBE-beta-CD and the N-alkyl group of spirobenzopyran play a role in the enantioseparation. On the other hand, the sulfate group of S-beta-CD was directly attached to the CD moiety which means that the S-beta-CD-drug complexation mechanism arises through the combination of electrostatic and hydrophobic (inside the CD cavity) interactions. Finally, enantiomers of spirobenzopyran drugs were satisfactorily resolved by CE using a 20 mg/mL S-beta-CD concentration (resolution 4.0), 7 mg/mL SBE-beta-CD DS 4 (resolution 1.3), or 5 mg/mL SBE-beta-CD DS 7 (resolution 3.3) added to the phosphate buffer (pH 2.6, 50 mM ionic strength).  相似文献   

19.
The complexation of camptothecin and homocamptothecin derivatives, topoisomerase I inhibitors, with two cyclodextrins (CDs) of pharmaceutical interest (native and hydroxypropylated β-CD) was studied at pH 3.5 and 6. In a first step, the affinity order of the six compounds studied for the β-CD and HP-β-CD was evaluated in HPLC using immobilized stationary phases [Cyclobond I 2000 (β-CD) and Cyclobond I 2000 RSP (HP-β-CD)]. In a second step, the apparent binding constants of the 12 complexes studied were determined at both pH by HPLC using Scott’s method with CD as a chiral additive. The 1:1 stoichiometry of the complex formed between HP-β-CD and the homocamptothecin derivative elomotecan (R)-6 was established by fluorescence spectroscopy using the continuous variation method developed by Job and ESI-MS. Complementary investigations were achieved for topotecan (S)-3 and elomotecan (R)-6 using CE. Further studies provided similar conclusions concerning affinity of all the derivatives studied for both CDs: that is, a slightly larger affinity was observed for HP-β-CD with respect to β-CD, except for (S)-3. For (S)-3, this affinity increase with pH, in the range studied.  相似文献   

20.
Li X  Zhou Z  Zhou W  Dai L  Li Z 《The Analyst》2011,136(23):5017-5024
A novel cyclodextrin (CD) derivative, mono-6-deoxy-benzimide-β-CD (MB-β-CD), in which a rigid substituent was linked to the narrow edge of the CD with a flexible H(2)C-N group, was successfully synthesized through the condensation of mono-6-deoxy-6-amino-β-cyclodextrin and benzaldehyde. To evaluate its enantioseparation abilities and investigate the role of the CD substituents and linkage in chiral recognition, MB-β-CD and mono-6-deoxyphenylimine-β-CD (MP-β-CD) with a rigid linkage were compared in the separation of 36 chiral compounds in a methanol/water mobile phase. The separation results showed that most of the analytes with rigid structures afforded better enantioresolutions on the MP-β-CD (with a rigid linkage) chiral stationary phase (CSP), while better enantioseparations for analytes with flexible structures and big steric hindrance were obtained on the MB-β-CD (with a flexible linkage) CSP. The former exhibited a specificity for the analyte structures, while the latter was more adaptable. Molecular dynamics simulations were performed to further understand the discrimination process and the function of the CD side arm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号