首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The feasibility of biomimetic molecular sensing of homocysteine, an independent risk factor for cardiovascular diseases, was studied. The sensing approach coupled fluorescent derivatization of dl-homocysteine by a thiol-specific fluoro-tagging agent, N-(1-pyrenyl)maleimide, with molecular recognition by a molecularly imprinted polymer (MIP) matrix. The non-covalent MIP was fabricated using the N-(1-pyrenyl)maleimide-dl-homocysteine (PM-H) adduct as template. The PM-H-MIP was found to possess outstanding analyte-specific affinity for PM-H with binding constant, KB, of 9.28±1.6×105 M−1 and density of recognition sites, Bmax, of 11.9±0.8 nmol/g dried MIP. Following in situ fluorescent derivatization, luminescent response of the MIP was found to correlate linearly with concentration of dl-homocysteine in the range corresponding to realistic total homocysteine concentration in blood plasma. Besides being a passive recognition matrix for the binding of the fluoro-tagged analyte, the PM-H-MIP material was found to be able to specifically enhance the rate of derivatization reaction between dl-homocysteine and N-(1-pyrenyl)maleimide. In a sense, the MIP transformed a fluoro-tagging agent, which is generally reactive towards a broad spectrum of thiol-containing species, into a dl-homocysteine-specific derivatizing agent. The mechanism of such analyte-specific enhancement of derivatization rate and its advantages to the biomimetic molecular sensing are discussed.  相似文献   

2.
A real-time monitoring of oxygen quenching of monomer fluorescence of bound probes: 1-pyrenemethyl methacrylate (PyMMA) and 1-pyrenemethyl(4-vinylbenzyl)ether (4-(1-pyrenyl)methoxymethylstyrene, PyMMS) was used for study of swelling of interpenetrating polymer network (IPN) consisting of polyethylene/poly(styrene-co-butylmethacrylate) (PE/P(S-co-BMA)) with different network density. The curves of oxygen quenching of pyrene chromophore were fitted to the monoexponential form of second Fick Law. The estimated diffusion coefficient of oxygen was in the range of 1-10 × 10−6 cm2 s−1 depending on the solvent and phase of IPN system. There is no dependence of fluorescence quenching by oxygen on cross-link density in this IPN systems.  相似文献   

3.
The hydrogen peroxide-oxidation of o-phenylenediamine (OPD) catalyzed by horseradish peroxidase (HRP) at 37 °C in 50 mM phosphate buffer (pH 7.0) was studied by calorimetry. The apparent molar reaction enthalpy with respect to OPD and hydrogen peroxide were −447 ± 8 kJ mol−1 and −298 ± 9 kJ mol−1, respectively. Oxidation of OPD by H2O2 catalyzed by HRP (1.25 nM) at pH 7.0 and 37 °C follows a ping-pong mechanism. The maximum rate Vmax (0.91 ± 0.05 μM s−1), Michaelis constant for OPD Km,S (51 ± 3 μM), Michaelis constant for hydrogen peroxide Km,H2O2 (136 ± 8 μM), the catalytic constant kcat (364 ± 18 s−1) and the second-order rate constants k+1 = (2.7 ± 0.3) × 106 M−1 s−1 and k+5 = (7.1 ± 0.8) × 106 M−1 s−1 were obtained by the initial rate method.  相似文献   

4.
The stereospecific binding of monoclonal antibody (mAb) 8E11 to anti-benzo(a)pyrene diol epoxide (BPDE)-dG adducts in single nucleoside, long oligonucleotide, and genomic DNA were quantitatively evaluated using noncompetitive and competitive capillary electrophoresis (CE) immunoassays. Two single-stranded TMR-BPDE-90mers containing a single anti-BPDE-dG adduct with defined stereochemistry and a fluorescent label at 5′-end were used as fluorescent probes for competitive CE immunoassay. To quantitatively evaluate the binding affinity through competitive CE immunoassays, a series of equations were derived according to the binding stoichiometry. The binding of mAb 8E11 to trans-(+)-anti-BPDE-dG displays strongest affinity (Kb: 3.57 × 108 M−1) among all four investigated anti-BPDE-dG mononucleoside adducts, and the cis-(−)-anti-BPDE-dG displays lowest affinity (Kb: 1.14 ×107 M−1). The binding of monoclonal antibody (mAb) 8E11 to BPDE-dG adducts in long DNA (90mer) preferentially forms the complex with a stoichiometry of 1:1, and that mAb 8E11 displays a slightly higher affinity with trans-(+)-anti-BPDE-90mers (Kb: 6.36 ± 0.54 × 108 M−1) than trans-(−)-anti-BPDE-90mers (Kb: 4.52 ± 0.52 × 108 M−1). The mAb 8E11 also displays high affinity with BPDE-dG adducts in genomic DNA (Kb: 3.74 × 108 M−1), indicating its promising applications for sensitive immuno-detection of BPDE-DNA adducts in genomic DNA.  相似文献   

5.
In this article a new coated platinum Cu2+ ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylideneamino)phenyl)disufanyl)phenylimino) methyl)-4-methoxyphenol Schiff base (L1) as a new ionophore is described. This sensor has a wide linear range of concentration (1.2 × 10−7-1.0 × 10−1 mol L−1) and a low detection limit of 9.8 × 10−8 mol L−1of Cu(NO3)2. It has a Nernstian response with slope of 29.54 ± 1.62 mV decade−1 and it is applicable in the pH range of 4.0-6.0 without any divergence in potentioal. The coated electrode has a short response time of approximately 9 s and is stable at least for 3.5 months. The electrode shows a good selectivity for Cu2+ ion toward a wide variety of metal ions. The proposed sensor was successfully applied for the determination of Cu2+ ion in different real and environmental samples and as indicator electrode for potentiometric titration of Cu2+ ion with EDTA.  相似文献   

6.
We present a novel approach to improve the analytical figures of merit of solid-phase extraction high-performance liquid chromatography (SPE-HPLC) for the analysis of monohydroxy-polycyclic aromatic hydrocarbons in urine samples. The novel alternative substitutes the evaporation step that is currently used in SPE-HPLC methodology with a pre-concentration procedure that extracts metabolites with gold nanoparticles. The analytical potential of the new approach is evaluated with the following six metabolites: 9-hydroxyphenanthrene, 2-hydroxyfluorene, 1-hydroxypyrene, 6-hydroxychrysene, 3-hydroxybenzo[a]pyrene and 4-hydroxybenzo[a]pyrene. We demonstrate that the substitution of the evaporation step with the gold nanoparticles procedure improves the overall recoveries, the relative standard deviations of the average recoveries and the limits of detection of SPE-HPLC analysis. The overall recoveries of the studied metabolites varied from 59.7 ± 3.6% (2-hydroxyfluorene) to 92.3 ± 2.5% (6-hydroxychrysene). The relative standard deviations of the average recoveries were lower than 6%. The limits of detection were at the parts-per-trillion levels and varied from ∼2 pg mL−1 (6-hydroxychrysene) to ∼18 pg mL−1 (2-hydroxyfluorene).  相似文献   

7.
In this paper we show that the carbodiimide-induced polymerisation of amino acid mixtures in aqueous medium and in presence of estradiol produces the mixtures of peptides with an average molecular weight of 2-6 kDa that are characterised by possessing molecular recognition properties towards estradiol. After the removal of the templating molecule, the binding properties of the peptide mixtures were studied using spectrophotometric and immunochemical methods. The experimental results show the presence of molecular recognition behaviour for all the peptide mixtures obtained by polymerisation in presence of estradiol, with affinity constant values between 0.44×109 and 6.6×109 M−1, while the same mixtures obtained without estradiol show lower affinity constant values between 2.2×106 and 1.3×109 M−1. The molecular recognition behaviour was found to be highly selective, as the binding constants of peptides towards the structural homologues testosterone and progesterone are lower than three orders of magnitude. Peptide fractions separated by ion-exchange chromatography show the same molecular recognition properties, with affinity constant values between 3.2×106 and 7.1×109 M−1. Similarities and differences between this polymerisation technique and the molecular imprinting technique are briefly discussed.  相似文献   

8.
Different arylurea-based receptors with similar substitution pattern and one guanidine-based receptor were synthesised and studied concerning their binding capability towards the title functional group; specific binding of neutral nitro groups is revealed with relatively high binding constants in DMSO ranging from 470 to 1370 M−1 for urea and 730-990 M−1 for guanidine-based binding partners.  相似文献   

9.
Bakir M  Green O  Gyles C  Mangaro B  Porter R 《Talanta》2004,62(4):781-789
The compound di-2-thienyl ketone p-nitrophenylhydrazone (DSKNPH) melting point 168-170 °C was isolated in good yield from the reaction between di-2-thienyl ketone (DSK) and p-nitrophenylhydrazine in refluxing ethanol containing a few drop of concentrated HCl. Nuclear magnetic resonance studies on DSKNPH in non-aqueous solvents revealed strong solvent and temperature dependence due to solvent-solute interactions. Optical measurements on DSKNPH in DMSO in the presence and absence of KPF6 gave extinction coefficients of 83,300±2000 and 25,600±2000 M−1 cm−1 at 612 and 427 nm at 295 K. In CH2Cl2, extinction coefficient of 34,000±2000 M−1 cm−1 was calculated at 422 nm. When DMSO solutions of DSKNPH were allowed to interact with DMSO solutions of NaBH4 the low energy electronic state becomes favorable and when DMSO solutions of DSPKNPH where allowed to interact with DMSO solutions of KPF6 or NaBF4, the high energy electronic state becomes favorable. The reversible BH4/BF4 interconversion points to physical interactions between these species and DSKNPH and hints to the possible use of DSKNPH as a spectrophotometric sensor for a variety of physical and chemical stimuli. Thermo-optical measurements on DSKNPH in DMSO confirmed the reversible interconversion between the high and low energy electronic states of DSKNPH and allowed for the calculations of the thermodynamic activation parameters of DSKNPH. Changes in enthalpy (ΔH) of +57.67±4.20; 27.15±0.90 kJ mol−1, entropy (ΔS) of +160±12.88; 83±2.91 J mol−1 and free energy (ΔG) of −8.52±0.40; 2.66±0.25 kJ mol−1 were calculated at 295 K in the absence and presence of NaBH4, respectively. Manipulation of the equilibrium distribution of the high and low energy electronic states of DSKNPH allowed for the use of these systems (DSKNPH and surrounding solvent molecules) as molecular sensors for group I and II metal ions. Group I and II metal ions in concentrations as low as 1.00×10−5 M can be detected and determined using DSKNPH in DMSO.  相似文献   

10.
In this article, we present a systematic study on IgG and Fab fragment of anti-IgG molecules using fluorescence auto- and cross-correlation spectroscopy to investigate their diffusion characteristics, binding kinetics, and the effect of small organic molecule, urea on their binding. Through our analysis, we found that the diffusion coefficient for IgG and Fab fragment of anti-IgG molecules were 37 ± 2 μm2 s−1 and 56 ± 2 μm2 s−1, respectively. From the binding kinetics study, the respective forward (ka) and backward (kd) reaction rates were (5.25 ± 0.25) × 106 M−1 s−1 and 0.08 ± 0.005 s−1, respectively and the corresponding dissociation binding constant (KD) was 15 ± 2 nM. We also found that urea inhibits the binding of these molecules at 4 M concentration due to denaturation.  相似文献   

11.
Caged versions of the most common mitochondrial uncouplers (proton translocators) have been prepared that sense the reactive oxygen species (ROS) hydrogen peroxide to release the uncouplers 2,4-dinitrophenol (DNP) and carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) from caged states with second order rate constants of 10 (±0.8) M−1 s−1 and 64.8 (±0.6) M−1 s−1, respectively. The trigger mechanism involves conversion of an arylboronate into a phenol followed by fragmentation. Hydrogen peroxide-activated uncouplers may be useful for studying the biological process of ageing.  相似文献   

12.
A simple procedure was developed to prepare a glassy carbon electrode modified with single-wall carbon nanotubes (SWCNTs) and Os(III)-complex. The glassy carbon (GC) electrode modified with CNTs was immersed into Os(III)-complex solution (direct deposition) for a short period of time (60 s). 1,4,8,12-Tetraazacyclotetradecane osmium(III) chloride, (Os(III)LCl2)·ClO4, irreversibly and strongly adsorbed on SWCNTs immobilized on the surface of GC electrode. Cyclic voltammograms of the Os(III)-complex-incorporated-SWCNTs indicate a pair of well defined and nearly reversible redox couple with surface confined characteristic at wide pH range (1-8). The surface coverage (Γ) and charge transfer rate constant (ks) of the immobilized Os-complex on SWCNTs were 3.07 × 10−9 mol cm−2, 5.5 (±0.2) s−1, 2.94 × 10−9 mol cm−2, 7.3 (±0.3) s−1 at buffer solution with pH 2 and 7, respectively, indicate high loading ability of SWCNTs for Os(III) complex and great facilitation of the electron transfer between electroactive redox center and carbon nanotubes immobilized on the electrode surface. Modified electrodes showed higher electrocatalytic activity toward reduction of BrO3, IO3 and IO4 in acidic solutions. The catalytic rate constants for catalytic reduction bromate, periodate and iodate were 3.79 (±0.2) × 103, 7.32 (±0.2) × 103 and 1.75 (±0.2) × 103 M−1 s −1, respectively. The hydrodynamic amperometry of rotating modified electrode at constant potential (0.3 V) was used for nanomolar detection of selected analytes. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantage of this sensor.  相似文献   

13.
We determine the association constants for ligand–protein complex formation using the flow injection method. We carry out the measurements at high flow rates (F = 1 mL min−1) of a carrier phase. Therefore, determination of the association constant takes only a few minutes. Injection of 1 nM of the ligand (10 μL of 1 μM concentration of the ligand solution) is sufficient for a single measurement. This method is tested and verified for a number of complexes of selected drugs (cefaclor, etodolac, sulindac) with albumin (BSA). We obtain K = 4.45 × 103 M−1 for cefaclor, K = 1.00 × 105 M−1 for etodolac and K = 1.03 × 105 M−1 for sulindac in agreement with the literature data. We also determine the association constants of 20 newly synthesized 3β- and 3α-aminotropane derivatives with potential antipsychotic activity – ligands of 5-HT1A, 5-HT2A and D2 receptors with the albumin. Results of the studies reported here indicate that potential antipsychotic drugs bind weakly to the transporter protein (BSA) with ≈ 102–103 M−1. Our method allows measuring K in a wide range of values (102–109 M−1). This range depends only on the solubility of the ligand and sensitivity of the detector.  相似文献   

14.
Hemoglobin (Hb) and myoglobin (Mb) were immobilized at the didodecyldimethylammonium bromide (DDAB)-modified powder microelectrode (PME) to fabricate Hb-DDAB-PME and Mb-DDAB-PME. Direct electrochemistry of Hb and Mb were achieved on the DDAB-modified PME. The formal potential was −0.224 V for Hb and −0.212 V for Mb (vs. SCE). The apparent surface concentration of Hb and Mb at the electrode surface was 2.83 × 10−8 and 9.94 × 10−8 mol cm−2. The Hb-DDAB-PME and Mb-DDAB-PME were successfully applied for measurement of NO in vitro. The anodic current peaks for NO oxidation at +0.7 V and the cathodic current peaks for NO reduction at −0.85 V on the CV curves were obtained on the modified electrodes. For detection of NO at +0.7 V, the sensitivity is 3.31 mA μM−1 cm−2 for Hb-DDAB-PME and 0.6 mA μM−1 cm−2 for Mb-DDAB-PME. The detection limit is 5 nM for Hb-DDAB-PME and 9 nM for Mb-DDAB-PME. The linear response range is 9-100 and 28-330 nM for Hb- and Mb-modified PME, respectively. For the electrochemical detection of NO at −0.85 V by using Hb-DDAB-PME, the detection sensitivity is 39.56 μA μM−1 cm−2; the detection limit is as low as 0.2 μM; and the linear response range is 1.90-28.08 μM.  相似文献   

15.
In a first step towards chemical sensors using molecular imprinted materials, the complexing characteristics of diethyl 4-nitrobenzylphosphonate, an organophosphate pesticide analogue, have been studied. Two molecules have been assessed as potential interacting moieties, specifically a fluoroalcohol and an aromatic acid. The interactions have been first characterized by regular methods, such as 1H, 31P NMR and IR spectroscopy. These showed a stoichiometry 1/1 for both complexes and association constants, respectively, close to 40 ± 10 and 12 ± 2 M−1. In a second step, isothermal titration calorimetry was used and a method was developed to obtain low-association constants. The association constant could be obtained for the fluoroalcohol ligand and was found equal to 63 ± 0.7 M−1. For the acidic molecule, an appropriate model could not be found, preventing the evaluation of this constant.  相似文献   

16.
A simple and rapid method for the highly sensitive determination of polycyclic aromatic hydrocarbons (PAHs) in water was developed. Benzo[a]pyrene, benzo[k]fluoranthene, perylene, and pyrene in water were concentrated into sodium dodecyl sulfate (SDS)-alumina admicelles. The collection was performed by adding SDS and alumina particles into the sample solution at pH 2. After gentle mixing, the resulting suspension was passed through a membrane filter to collect the SDS admicelles containing highly concentrated PAHs. The filter was placed on a slide glass and then covered admicellar layer with a fused silica glass plate before setting in a fluorescence spectrometer. Benzo[a]pyrene, benzo[k]fluoranthene, perylene, and pyrene were selectively determined by the synchronous fluorescence scan (SFS) analysis with keeping wavelength intervals between excitation and emission to 98, 35, 29, and 45 nm, respectively. Because of the minimum spectral overlapping, 1-40 ng l−1 of benzo[a]pyrene, benzo[k]fluoranthene, and perylene as well as 10-150 ng l−1 of pyrene were selectively determined with eliminating the interferences of other 12 PAHs. The detection limits were 0.3 ng l−1 for benzo[a]pyrene, benzo[k]fluoranthene, and perylene, and 1 ng l−1 for pyrene. They were 2-3 orders of magnitude lower than the detection limits in normal aqueous micellar solutions. The application to water analysis was studied.  相似文献   

17.
Reaction of trans-[PtClMe(SMe2)2] with the mono anionic ligands azide, bromide, cyanide, iodide and thiocyanate result in substitution of the chloro ligand as the first step. In contrast the neutral ligands pyridine, 4-Me-pyridine and thiourea substitute a SMe2 ligand in the first step as confirmed by 1H NMR spectroscopy and the kinetic data. Detailed kinetic studies were performed in methanol as solvent by use of conventional stopped-flow spectrophotometry. All processes follow the usual two-term rate law for square-planar substitutions, kobs = k1 + k2[Y] (where k1 = kMeOH[MeOH]), with k1 = 0.088 ± 0.004 s−1 and k2 = 1.18 ± 0.13, 3.8 ± 0.3, 17.8 ± 1.3, 34.9 ± 1.4, 75.3 ± 1.1 mol−1 dm3 s−1 for Y = N3, Br, CN, I and SCN respectively at 298 K. The reactions with the neutral ligands proceed without an appreciable intercept with k2 = 5.1 ± 0.3, 15.3 ± 1.8 and 195 ± 3 mol−1 dm3 s−1 for Y = pyridine, 4-Me-pyridine and thiourea, respectively, at 298 K. Activation parameters for MeOH, , Br, CN, I, SCN, and Tu are ΔH = 47.1 ± 1.6, 49.8 ± 0.6, 39 ± 3, 32 ± 8, 39 ± 5, 34 ± 4 and 31 ± 3 kJ mol−1 and ΔS = −107 ± 5, −77 ± 2, −104 ± 9,−113 ± 28, −85 ± 18, −94 ± 14 and −97 ± 10 J K−1 mol−1, respectively. Recalculation of k1 to second-order units gives the following sequence of nucleophilicity: (1:13:42:57:170:200:390:840:2170) at 298 K. Variation of the leaving group in the reaction between trans-[PtXMe(SMe2)2] and SCN follows the same rate law as stated above with k2 = 75.3 ± 1.1, 236 ± 4 and 442 ± 5 mol−1 dm3 s−1 for X = Cl, I and N3, respectively, at 298 K. The corresponding activation parameters were determined as ΔH = 34 ± 4, 32 ± 2 and 39.3 ± 1.7 kJ mol−1 and ΔS = −94 ± 14, −86 ± 8 and −68 ± 6 J K−1 mol−1. All the kinetic measurements indicate the usual associate mode of activation for square planar substitution reactions as supported by large negative entropies of activation, a significant dependence of the reaction rate on different entering nucleophiles and a linear free energy relationship.  相似文献   

18.
Terpyridine copper(II) complexes [Cu(L)2](NO3)2, where L is (4′-phenyl)-2,2′:6′,2′′-terpyridine (ph-tpy in 1) and [4′-(1-pyrenyl)]-2,2′:6′,2′′-terpyridine (py-tpy in 2), are prepared, characterized and their photocytotoxic activity studied. The crystal structure of complex 1 shows distorted octahedral CuN6 coordination geometry. The 1:2 electrolytic and one-electron paramagnetic complexes show a visible band near 650 nm in DMF–H2O. The complexes show emission band at 352 nm for 1 and 425 nm for 2 when excited at 283 and 346 nm, respectively. The Cu(II)–Cu(I) redox couple is observed near −0.2 V versus SCE in DMF–0.1 M TBAP. The complexes are avid partial-intercalative binders to calf thymus DNA giving binding constant (Kb) values of ∼106 M−1. Complex 2 with its photoactive pyrenyl moiety exhibits significant photocleavage of pUC19 DNA in red light via singlet oxygen pathway. Complex 2 also exhibits significant photo-activated cytotoxicity in HeLa cancer cells in visible light giving IC50 value of 11.9 μM, while being non-toxic in dark with an IC50 value of 130.5 μM.  相似文献   

19.
A novel progesterone immunosensor using a colloidal gold-graphite-Teflon-tyrosinase composite biosensor as amperometric transducer is reported. A sequential competitive configuration between the analyte and progesterone labelled with alkaline phosphatase (AP) was used. Phenyl phosphate was employed as the AP-substrate and the enzyme reaction product, phenol, was oxidized by tyrosinase to o-quinone, which is subsequently reduced at −0.1 V at the biocomposite electrode. Variables such as the concentration of phenyl phosphate, the amount of antibody attached to the electrode surface, immersion time in a 2% BSA solution, working pH and incubation times in progesterone and AP conjugate were optimized. A linear calibration graph for progesterone was obtained between 0 and 40 ng mL−1 with a slope value of −82.3 nA ng−1 mL, and a detection limit of 0.43 ng mL−1. The time needed to reach the steady-state current from the addition of phenyl phosphate was 30-40 s. These analytical characteristics improve substantially those reported for other progesterone immunosensors. A lifetime of 14 days with no need to apply any regeneration procedure was also achieved. The usefulness of the immunosensor was evaluated by determining progesterone in milk samples spiked with the analyte at 5.0 and 1.5 ng mL−1 concentration levels. Following a very simple procedure, involving only sample dilution, mean recoveries (n = 7) of 98 ± 3% and 99 ± 3%, respectively, were obtained.  相似文献   

20.
In the present study, the interactions between actinomycin D (ActD) and single stranded DNA (ssDNA) 5′-CGTAACCAACTGCAACGT-3′ and a duplex stranded DNA (dsDNA) with this sequence were investigated by microchip-based non-gel sieving electrophoresis and electrospray ionization mass spectrometry (ESI-MS). The ssDNA was designed according to the conserved regions of open reading frame 1b (replicase 1B) following the Tor 2 SARS genome sequence of 15611-15593. The binding constants of the interactions between ActD and ssDNA/dsDNA were (8.3 ± 0.32) × 106 M−1 (ssDNA) and (2.8 ± 0.02) × 105 M−1 (dsDNA), respectively, calculated from microchip electrophoresis via Scatchard plot. The binding stoichiometries were 1:1 (single/1ActD molecule) and 1:2 (duplex/2ActD molecules) calculated from microchip electrophoresis, and the results were further verified by ESI-MS. The results obtained by these two methods indicated that ActD bound much more tightly to ssDNA used in this work than dsDNA. Furthermore, this is shown that the microchip-based non-gel sieving electrophoresis method is a rapid, highly sensitive and convenient method for the studies of interactions between DNA and small molecule drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号