首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photo-Fenton degradation of carbamazepine (CBZ) assisted with ultrasound radiation (US/UV/H2O2/Fe) was tested in a lab thin film reactor allowing high TOC removals (89% in 35 min). The synergism between the UV process and the sonolytic one was quantified as 55.2%.To test the applicability of this reactor for industrial purposes, the sono-photo-degradation of CBZ was also tested in a thin film pilot plant reactor and compared with a 28 L UV-C conventional pilot plant and with a solar Collector Parabolic Compound (CPC). At a pilot plant scale, a US/UV/H2O2/Fe process reaching 60% of mineralization would cost 2.1 and 3.8 €/m3 for the conventional and thin film plant respectively. The use of ultrasound (US) produces an extra generation of hydroxyl radicals, thus increasing the mineralization rate.In the solar process, electric consumption accounts for a maximum of 33% of total costs. Thus, for a TOC removal of 80%, the cost of this treatment is about 1.36 €/m3. However, the efficiency of the solar installation decreases in cloudy days and cannot be used during night, so that a limited flow rate can be treated.  相似文献   

2.
《Ultrasonics sonochemistry》2014,21(5):1778-1786
The present work deals with application of sonochemical reactors for the treatment of imidacloprid containing wastewaters either individually or in combination with other advanced oxidation processes. Experiments have been performed using two different configurations of sonochemical reactors viz. ultrasonic horn (20 kHz frequency and rated power of 240 W) and ultrasonic bath equipped with radially vibrating horn (25 kHz frequency and 1 kW rated power). The work also investigates the effect of addition of process intensifying agents such as H2O2 and CuO, which can enhance the production of free radicals in the system. The combination studies with advanced oxidation process involve the advanced Fenton process and combination of ultrasound with UV based oxidation. The extent of degradation obtained using combination of US and H2O2 at optimum loading of H2O2 was found to be 92.7% whereas 96.5% degradation of imidacloprid was achieved using the combination of US and advanced Fenton process. The process involving the combination of US, UV and H2O2 was found to be the best treatment approach where complete degradation of imidacloprid was obtained with 79% TOC removal. It has been established that the use of cavitation in combination with different oxidation processes can be effectively used for the treatment of imidacloprid containing wastewater.  相似文献   

3.
《Ultrasonics sonochemistry》2014,21(5):1770-1777
The harmful effects of wastewaters containing pesticides or insecticides on human and aquatic life impart the need of effectively treating the wastewater streams containing these contaminants. In the present work, hydrodynamic cavitation reactors have been applied for the degradation of imidacloprid with process intensification studies based on different additives and combination with other similar processes. Effect of different operating parameters viz. concentration (20–60 ppm), pressure (1–8 bar), temperature (34 °C, 39 °C and 42 °C) and initial pH (2.5–8.3) has been investigated initially using orifice plate as cavitating device. It has been observed that 23.85% degradation of imidacloprid is obtained at optimized set of operating parameters. The efficacy of different process intensifying approaches based on the use of hydrogen peroxide (20–80 ppm), Fenton’s reagent (H2O2:FeSO4 ratio as 1:1, 1:2, 2:1, 2:2, 4:1 and 4:2), advanced Fenton process (H2O2:Iron Powder ratio as 1:1, 2:1 and 4:1) and combination of Na2S2O8 and FeSO4 (FeSO4:Na2S2O8 ratio as 1:1, 1:2, 1:3 and 1:4) on the extent of degradation has been investigated. It was observed that near complete degradation of imidacloprid was achieved in all the cases at optimized values of process intensifying parameters. The time required for complete degradation of imidacloprid for approach based on hydrogen peroxide was 120 min where as for the Fenton and advance Fenton process, the required time was only 60 min. To check the effectiveness of hydrodynamic cavitation with different cavitating devices, few experiments were also performed with the help of slit venturi as a cavitating device at already optimized values of parameters. The present work has conclusively established that combined processes based on hydrodynamic cavitation can be effectively used for complete degradation of imidacloprid.  相似文献   

4.
In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3–6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3–11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes.  相似文献   

5.
The degradation of a reactive azo dye, Direct Red 81 (DR81), by Fenton process and in conjunction with sonolysis (SonoFenton) was studied. The synergistic effect of Fenton process and sonolysis enhanced the degradation of Direct Red 81 in aqueous solutions and the reaction followed the mechanism of hydroxyl radical (HO) oxidation. The influence of the initial substrate concentration, pH and catalyst loading on the rate of decolorisation were studied. The dye decolorisation followed apparent first order kinetics. The optimum conditions for decolorisation were pH = 3.0, [Fe2+] = 0.2 g/l, [H2O2] = 5.1 × 10−3 mol/l and ultrasonic frequency = 120 kHz, 60 W. These conditions yielded 99% decolorisation of DR81 within 75 min. The sonolytic degradation products of DR81 were identified using Electrospray Ionization-Mass Spectrometry (ESI-MS). The presence of CO32−, HCO3, Cl, NO3, and SO42− ions in the dye solution did not have a considerable effect on the decolorisation efficiency. This study demonstrates that Fenton and SonoFenton methods can effectively decolorize DR81 dye in waste water. The dye concentration used in this study is higher compared to earlier studies illustrating the effective mineralization by the SonoFenton process. The mechanism of dye degradation is also proposed.  相似文献   

6.
Methomyl, a carbamate pesticide, is classified as a pesticide of category-1 toxicity and hence shows harmful effects on both human and aquatic life. In the present work, the degradation of methomyl has been studied by using hydrodynamic cavitation reactor (HC) and its combination with intensifying agents such as H2O2, fenton reagent and ozone (hybrid processes). Initially, the optimization of operating parameters such pH and inlet pressure to the cavitating device (circular venturi) has been carried out for maximizing the efficacy of hydrodynamic cavitation. Further degradation study of methomyl by the application of hybrid processes was carried out at an optimal pH of 2.5 and the optimal inlet pressure of 5 bar. Significant synergetic effect has been observed in case of all the hybrid processes studied. Synergetic coefficient of 5.8, 13.41 and 47.6 has been obtained by combining hydrodynamic cavitation with H2O2, fenton process and ozone respectively. Efficacy of individual and hybrid processes has also been obtained in terms of energy efficiency and extent of mineralization. HC + Ozone process has proved to be the most effective process having highest synergetic coefficient, energy efficiency and the extent of mineralization. The study has also encompassed the identification of intermediate by-products generated during the degradation and has proposed the probable degradation pathway. It has been conclusively established that hydrodynamic cavitation in the presence of intensifying agents can effectively be used for complete degradation of methomyl.  相似文献   

7.
The removal of Orange II (O-II) from aqueous solution under irradiation at 850 kHz has been studied. The effects of both homogeneous (with FeSO4/H2O2), and heterogeneous (Fe containing ZSM-5 zeolite/H2O2) Fenton type reagents are reported together with the effect of UV irradiation in combination with ultrasound both alone and with homogeneous Fenton-type reagent.Degrees of decolourisation of 6.5% and 28.9% were observed using UV radiation and ultrasound, respectively, whereas under the simultaneous irradiation of ultrasound and UV light, the decolourisation degree reached 47.8%, indicating a synergetic effect of ultrasound and UV light. The decolourisation was increased with the addition of Fenton’s reagent with an optimal Fenton molar reagent ratio, Fe2+:H2O2 of 1:50. In the combined process of ultrasound and UV light with the homogeneous Fenton system 80.8% decolourisation could be achieved after 2 h indicating that UV improves this type of Orange II degradation. The degree of decolourisation obtained using the heterogeneous sono-Fenton system (Fe containing ZSM-5 zeolite catalysts + H2O2 + ultrasound) were consistently lower than the traditional homogeneous ultrasound Fenton system. This can be attributed to the greater difficulty of the reaction between Fe ions and hydrogen peroxide.In all cases the Orange II ultrasonic decolourisation was found to follow first order kinetics.  相似文献   

8.
Sonochemical removal of 2,4-dinitrophenol (DNP) has been investigated using ultrasonic bath, with an operating capacity of 7 L, fitted with a large transducer with longitudinal vibrations having a 1 kW rated power output and operating frequency of 25 kHz. It has been revealed from calorimetric studies that maximum power is dissipated at a capacity of 7 L. The concentration of DNP has been monitored with an objective of evaluation of the efficacy of ultrasonic reactor in combination with process intensifying approaches for the removal of DNP. The effect of operating pH and additives such as hydrogen peroxide and ferrous iron activated persulfate on the extent of removal of DNP has been investigated. It has been observed that the extent of removal is greater at lower pH (pH 2.5 and 4) than at higher pH (pH 10). The combined treatment strategies such as ultrasound (US)/Fenton, US/advanced Fenton and US/CuO/H2O2 have also been investigated with an objective of obtaining complete removal of DNP using hybrid treatment strategies. The extent of removal has been found to increase significantly in US/Fenton process (98.7%) as compared to that using US alone (5.8%) which demonstrates the efficacy of the combined process. First order kinetics has been fitted for all the approaches investigated in the work. Calculations of cavitational yield indicated the superiority of the reactor design as compared to the conventional ultrasonic horn type reactors. The main intermediates formed during the process of removal of DNP have been identified.  相似文献   

9.
In this study, the rectorite-supported nanoscale zero-valent iron (nZVI/R) was synthesized through a reduction method. X-ray diffraction analysis showed the existence of the nZVI in the nZVI/R composite and X-ray photoelectron spectroscopy analysis indicated that the nZVI particles were partly oxidized into iron oxide. Scanning electron microscopy analysis revealed that the nZVI particles were highly dispersed on the surface of the rectorite. The specific surface area of the nZVI/R composite is 21.43 m2/g, which was higher than that of rectorite (4.30 m2/g) and nZVI (17.97 m2/g). In the presence of ultrasound (US), the degradation of methyl orange and metronidazole by the nZVI/R composite was over 93% and 97% within 20 min, respectively, which is much higher than that by the rectorite and the nZVI. The degradation ratio of methyl orange and metronidazole by the nZVI/R composite under US was 1.7 and 1.8 times as high as that by the nZVI/R composite without US, respectively. The mechanism of the enhanced degradation of methyl orange and metronidazole under US irradiation was studied. These results indicate that the US/nZVI/R process has great potential application value for treatment of dye wastewater and medicine wastewater.  相似文献   

10.
《Ultrasonics sonochemistry》2014,21(5):1881-1885
In this work, the decolorization of C.I. Reactive Blue 181 (RB181), an anthraquinone dye, by Ultrasound and Fe2+ H2O2 processes was investigated. The effects of operating parameters, such as Fe2+ dosage, H2O2 dosage, pH value, reaction time and temperature were examined. Process optimisation [pH, ferrous ion (Fe2+), hydrogen peroxide (H2O2), and reaction time], kinetic studies and their comparison were carried out for both of the processes. The Sono-Fenton process was performed by indirect sonication in an ultrasonic water bath, which was operated at a fixed 35-kHz frequency. The optimum conditions were determined as [Fe2+] = 30 mg/L, [H2O2] = 50 mg/L and pH = 3 for the Fenton process and [Fe2+] = 10 mg/L, [H2O2] = 40 mg/L and pH = 3 for the Sono-Fenton process. The colour removals were 88% and 93.5% by the Fenton and Sono-Fenton processes, respectively. The highest decolorization was achieved by the Sono-Fenton process because of the production of some oxidising agents as a result of sonication. The paper also discussed kinetic parameters. The decolorization kinetic of RB181 followed pseudo-second-order reaction (Fenton study) and Behnajady kinetics (Sono-Fenton study).  相似文献   

11.
The present study has investigated the degradation of thiamethoxam using ultrasound cavitation (US) operated at a frequency of 20 kHz and its combination with intensifying additives viz. hydrogen peroxide, Fenton and photo-Fenton reagent. At the outset, the performance of US (20 kHz) has been maximised by the optimization of process parameters. Highest rate of degradation of thiamethoxam was observed at the optimum ultrasonic power density of 0.22 W/mL, thiamethoxam concentration of 10 ppm and the pH of 2. The established optimum values of operating parameters were used further in case of combined treatment approaches. The effect of concentration of H2O2 on the rate of degradation of thiamethoxam in the case of US + H2O2 process has confirmed the existence of optimum concentration of H2O2 with the ratio of thiamethoxam: H2O2 as 1:10. US + Fenton process indicated the optimal molar ratio of FeSO4·7H2O:H2O2 as 1:15. The combined processes of US + H2O2, US + Fenton and US + photo-Fenton have resulted in the extent of degradation of 20.47 ± 0.61%, 34.41 ± 1.03% and 85.17 ± 2.56% respectively after 45 min. of operation. These combined processes lead to the synergistic index of 2.04 ± 0.06, 2.26 ± 0.07 and 2.42 ± 0.07 in case of US + H2O2, US + Fenton and US + photo-Fenton processes respectively over only US/stirring treatment with the additive. Additionally, the extent of mineralization and the energy efficiency of individual and combined processes have been compared. US + photo-Fenton process has been found to be the best strategy for effective degradation of thiamethoxam with a significant intensification benefit. The by-products formed during the ultrasonic degradation of thiamethoxam have been identified by using LC-MS/MS analysis.  相似文献   

12.
《Ultrasonics sonochemistry》2014,21(4):1358-1365
Ultrasonic-assisted heterogeneous Fenton reaction was used for degradation of nitrobenzene (NB) at neutral pH conditions. Nano-sized oxides of α-Fe2O3 and CuO were prepared, characterized and tested in degradation of NB (10 mg L−1) under sonication of 20 kHz at 25 °C. Complete degradation of NB was effected at pH 7 in presence of 10 mM H2O2 after 10 min of sonication in presence of α-Fe2O3 (1.0 g L−1), (k = 0.58 min−1) and after 25 min in case of CuO (k = 0.126 min−1). α-Fe2O3 showed also effective degradation under the conditions of 0.1 g L−1 oxide and 5.0 mM of H2O2, even though with a lower rate constant (0.346 min−1). Sonication plays a major role in enhancing the production of hydroxyl radicals in presence of solid oxides. Hydroxyl radicals-degradation pathway is suggested and adopted to explain the differences noted in rate constants recorded on using different oxides.  相似文献   

13.
In the present work, combination of ultraviolet (UV) irradiations (using 8 W UV tube) with ultrasonic (US) irradiations (rated power 1 kW and frequency of 25 kHz) has been investigated for the degradation of phenol at pilot scale of operation. Different modes of operation viz. UV alone, US alone, UV/US, UV/TiO2 (photocatalysis), UV/H2O2, UV/NaCl, UV/US/TiO2 (sonophotocatalysis) and H2O2 assisted sonophotocatalysis have been investigated with an objective of maximizing the extent of phenol degradation. Effect of presence of hydrogen peroxide and sodium chloride at a concentration of 10 g/l and TiO2 over a range of 0.5–2.5 g/l has been investigated. It has been observed that 2.0 g/l of TiO2 is the optimum concentration, beyond which a decrease in the extent of degradation is observed. Maximum extent of degradation of phenol was 37.75% for H2O2 assisted photosonocatalysis at pH of 2. The present work is first of its kind to report the use of combined ultrasonic and UV irradiations at pilot scale operation and obtained results should induce some degree of certainty in proposed industrial applications of sonochemical reactors for wastewater treatment.  相似文献   

14.
The effectiveness of ozone combined with ultrasound techniques in degrading reactive red X-3B is evaluated. A comparison among ozone (O3), ultrasonic (US), ozone/ultrasonic (O3/US) for degradation of reactive red X-3B has been performed. Results show that O3/US system was the most effective and the optimally synergetic factor reaches to 1.42 in O3/US system. The cavitation of ultrasound plays an important role during the degradation process. It is found that 99.2% of dye is degraded within 6 min of reaction at the initial concentration of 100 mg·L−1, pH of 6.52, ozone flux of 40 L·h−1 and ultrasonic intensity of 200 W·L−1. Ozonation reactions in conjunction with sonolysis indicate that the decomposition followed pseudo-first-order reaction kinetics but the degradation efficiencies are affected by operating conditions, particularly initial pH and ultrasonic intensity. A kinetic model is established based on the reaction corresponding to operational parameters. In addition, the main reaction intermediates, such as p-benzoquinone, catechol, hydroquinone, phthalic anhydride and phthalic acid, are separated and identified using GC/MS and a possible degradation pathway is proposed during the O3/US process.  相似文献   

15.
A hybrid advanced oxidation process combining sonochemistry (US) and electrochemistry (EC) for the batch scale degradation of ibuprofen was developed. The performance of this hybrid reactor system was evaluated by quantifying on the degradation of ibuprofen under the variation in electrolytes, frequency, applied voltage, ultrasonic power density and temperature in aqueous solutions with a platinum electrode. Among the methods examined (US, EC and US/EC), the hybrid method US/EC resulted 89.32%, 81.85% and 88.7% degradations while using NaOH, H2SO4 and deionized water (DI), respectively, with a constant electrical voltages of 30 V, an ultrasound frequency of 1000 kHz, and a power density of 100 W L−1 at 298 K in 1 h. The degradation was established to follow pseudo first order kinetics. In addition, energy consumption and energy efficiencies were also calculated. The probable mechanism for the anodic oxidation of ibuprofen at a platinum electrode was also postulated.  相似文献   

16.
Industrial wastewaters containing biorefractory compounds like cyanide offer significant environmental problems attributed to the fact that the conventional methods have limited effectiveness and hence developing efficient treatment approaches is an important requirement. The present work investigates the use of novel treatment approach of ultrasound (US) combined with advanced oxidation techniques for the degradation of potassium ferrocyanide (KFC) for the first time. An ultrasonic bath equipped with longitudinal horn (1 kW rated power and 25 kHz frequency) has been used. The effect of initial pH (2–9) on the progress of degradation has been investigated initially and subsequently using the optimized pH, effect of addition of hydrogen peroxide (ratio of KFC:H2O2 varied over the range of 1:0.5–1:5) and TiO2 in the presence of H2O2 (1:1 ratio by weight of TiO2) as process intensifying approach has been studied. Combination of ultrasonic irradiation with ozone (O3) (100–400 mg/h) and ultraviolet irradiation (UV) has also been investigated. Use of combination of US with H2O2, H2O2 + TiO2 and ozone resulted in extent of KFC degradation as 54.2%, 74.82% and 82.41% respectively. Combination of US with both UV and ozone was established to be the best approach yielding 92.47% degradation. The study also focused on establishing kinetic rate constants for all the treatment approaches which revealed that all the approaches followed first order kinetic mechanism with higher rate constants for the combination approaches. Overall, it has been conclusively established that ultrasound based combined treatment schemes are very effective for the treatment of KFC containing wastewaters.  相似文献   

17.
Two things are needed for any technology to be suitable for use in the industry, viz. 1. Technical feasibility and 2. Economical feasibility. The use of ultrasound for waste water treatment has been shown to be technically feasible by numerous reports in the literature over the years. But there are hardly any exhaustive reports which address the issue of economical feasibility of the use of ultrasound for waste water treatment on industrial scale.Hence an attempt was made to estimate the cost for the waste water treatment using ultrasound. The costs have been calculated for 1000 L/min capacity treatment plant. The costs were calculated based upon the rate constants for pollutant degradation. The pollutants considered were phenol, trichloroethylene (TCE) and reactive azo dyes. Time required for ninety percent degradation of pollutant was taken as the residence time. The amount of energy required to achieve the target degradation was calculated from the energy density (watt/ml) used in the treatability study. The cost of treatment was calculated by considering capital cost and operating cost involved for the waste water treatment. Quotations were invited from vendors to ascertain the capital cost of equipments involved and operating costs were calculated based on annual energy usage. The cost was expressed in dollars per 1000 gallons of waste water treated. These treatment costs were compared with other established Advanced Oxidation Process (AOP) technologies. The cost of waste water treatment for phenol was in the range of $89 per 1000 gallons for UV/US/O3 to $15,536 per 1000 gallons for US alone. These costs for TCE were in the range of $25 per 1000 gallons to $91 for US + UV treatment and US alone, respectively. The cost of waste water treatment for reactive azo dyes was in the range of $65 per 1000 gallon for US + UV + H2O2 to $14,203 per 1000 gallon for US alone.This study should help in quantifying the economics of waste water treatment using ultrasound on industrial scale. We strongly believe that this study will immensely help the researchers working in the area of applications of ultrasound for waste water treatment in terms of where the technology stands today as compared to other available commercial AOP technologies. This will also help them think for different ways to improve the efficiency of using ultrasound or search for other ways of generating cavitation which may be more efficient and help reduce the cost of treatment in future.  相似文献   

18.
《Ultrasonics sonochemistry》2014,21(3):1206-1212
The decoloration of reactive dye C.I. Reactive Blue 19 (RB 19) using combined ultrasound with the Fenton process has been investigated. The effect of varying the concentrations of hydrogen peroxide and iron sulfate, initial pH, ultrasonic power, initial dye concentration and dissolved gas on the decoloration and degradation efficiencies was measured. Calibration of the ultrasound systems was performed using calorimetric measurements and oxidative species monitoring using the Fricke dosimeter and degradations were carried out with a 20 kHz probe type transducer at 2, 4, 6 and 8 W cm−2 of acoustic intensity at 15, 25, 50 and 75 mg L−1 initial dye concentrations. First order rate kinetics was observed. It was found that while the degradation rate due to ultrasound alone was slow, sonication significantly accelerated the Fenton reaction. While the results were similar to those reported for other dyes, the effects occurred at lower concentrations. The rate and extent of decoloration of RB 19 increased with rising hydrogen peroxide concentration, ultrasonic powers and iron sulfate concentration but decreased with increasing dye concentration. An optimum pH value of pH = 3.5 was found. The rate of decoloration was higher when dissolved oxygen was present as compared with nitrogen and argon confirming the solution phase mechanism of the degradation.  相似文献   

19.
《Ultrasonics sonochemistry》2014,21(5):1797-1804
The present work deals with degradation of aqueous solution of Rhodamine 6G (Rh 6G) using sonocatalytic and sonophotocatalytic treatment schemes based on the use of cupric oxide (CuO) and titanium dioxide (TiO2) as the solid catalysts. Experiments have been carried out at the operating capacity of 2 L and constant initial pH of 12.5. The effect of catalyst loading on the sonochemical degradation has been investigated by varying the loading over the range of 1.5–4.5 g/L. It has been observed that the maximum degradation of 52.2% was obtained at an optimum concentration of CuO as 1.5 g/L whereas for TiO2 maximum degradation was observed as 51.2% at a loading of 4 g/L over similar treatment period. Studies with presence of radical scavengers such as methanol (CH3OH) and n-butanol (C4H9OH) indicated lower extents of degradation confirming the dominance of radical mechanism. The combined approach of ultrasound, solid catalyst and scavengers has also been investigated at optimum loadings to simulate real conditions. The optimal solid loading was used for studies involving oxidation using UV irradiations where 26.4% and 28.9% of degradation was achieved at optimal loading of CuO and TiO2, respectively. Studies using combination of UV and US irradiations have also been carried out using the optimal concentration of the catalysts. It has been observed that maximum degradation of 63.3% is achieved using combined US and UV with TiO2 (4 g/L) as the photocatalyst. Overall it can be said that the combined processes give higher extent of degradation as compared to the individual processes based on US or UV irradiations.  相似文献   

20.
In this study, synergistic degradation of antibiotic norfloxacin (NOR) was obtained in a novel sonochemical ultrasound/zero-valent iron/tetraphosphate system (US/ZVI/TPP). Compared to three common organic ligands (EDTA, EDDS, and DTPA), TPP could perform more excellently in activation of O2 to produce reactive oxidative species (ROS) and lead to efficient Fenton-like oxidative degradation of NOR in the sonochemical in situ chemical oxidation (ISCO) system. An optimized initial condition was obtained as 10 mg/L NOR, 0.3 mM TPP, 1 g/L ZVI and initial pH 7, and the US/ZVI/TPP system would effectively degrade NOR with relative low dosage of ZVI and ligand as well as broad pH work range 3–9. It was found that three ROS (OH, O2 and H2O2) instead of OH only would participate in the NOR degradation, while the in situ generation of H2O2 during the series of Fe-TPP reactions should be more critical. Fourteen organic intermediates and four inorganic products were detected during the NOR decomposition, suggesting that two main degradation pathways would occur under OH oxidation via cleavage of the piperazine ring and defluorination of the benzene ring, respectively. Finally, an integrated reaction mechanism in the US/ZVI/TPP system was proposed including solid-liquid interfacial iron corrosion as well as bulk homogenous oxygen activation and Fenton reactions, wherein US would play mechanically and chemically promotional roles. Besides, triple-repeated treatments suggested the relative long-term re-usage of ZVI particles and low effluent dissolved iron (<0.6 mg/L).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号