首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
激光空泡在文丘里管中运动的动力学特性   总被引:1,自引:0,他引:1       下载免费PDF全文
李小磊  秦长剑  张会臣 《物理学报》2014,63(5):54707-054707
以水为工作介质,在不同文丘里管入口压力下,利用YAG激光器产生的激光轰击水中的金属靶材产生空泡,借助高速摄像系统记录激光空泡在文丘里管中的运动过程,并采用流体动力学模拟对文丘里管中的流场特性和空泡的溃灭特性进行分析.结果表明:激光空泡在文丘里管中的运动,其形状变化可分为产生阶段、挤压阶段、溃灭初始阶段和溃灭阶段等四个阶段.空泡的溃灭取决于流场状态,当流动为层流时,空泡不发生溃灭;当流动为湍流时,空泡发生溃灭,且湍流程度越剧烈,溃灭现象越显著.搭建的激光空泡生成与运动系统能够实现空泡的定点溃灭.  相似文献   

2.
《Physics letters. A》1999,251(5):303-310
Bubble formation and bubble collapse zones in a laser-induced nonlinear Rayleigh-Taylor (R-T) instability were shown to follow the contours of a series of R-T shock-fronts generated on an irregular planar (terrace-like) target surface. Bubble formation occurs in the regime of target planar vaporization. Spatial variation of the bubble density distribution, the bubble size, and the bubble-bubble distance, as a function of distance from the shock front envelope, were determined. Bubble collapse occurs in the regime of planar-to-volume boiling transition and proceeds by the so-called “chain reaction” collapse mechanism inside a 2D bubble array. The contours of bubble generation and of bubble collapse were simulated by using the analytical model of Ott with variable phase and variable amplitude of R-T modes.  相似文献   

3.
Bubble behaviors near a boundary in an ultrasonic field are the fundamental forms of acoustic cavitation and of substantial importance in various applications, such as industry cleaning, chemical engineering and food processing. The effects of two important factors that strongly affect the dynamics of a single acoustic cavitation bubble, namely, the initial bubble radius and the standoff distance, were investigated in this work. The temporal evolution of the bubble was recorded using high speed microphotography. Meanwhile, the time of bubble collapse and the characteristics of the liquid jets were analyzed. The results demonstrate that the intensity of the acoustic cavitation, which is characterized by the time of bubble collapse and the liquid jet speed, reaches the optimum level under suitable values of the initial bubble radius and the normalized standoff distance. As the initial bubble radius and the normalized standoff distance increase or decrease from the optimal values, the time of the bubble collapse increases, and the first liquid jet’s speed decreases substantially, whereas the speeds of the second and third liquid jets exhibit no substantial changes. These results on bubble dynamics in an ultrasonic field are important for identifying or correcting the mechanisms of acoustic cavitation and for facilitating its optimization and application.  相似文献   

4.
In this paper we investigate the bubble collapse dynamics under shock-induced loading near soft and rigid bio-materials, during shock wave lithotripsy. A novel numerical framework was developed, that employs a Diffuse Interface Method (DIM) accounting for the interaction across fluid–solid-gas interfaces. For the resolution of the extended variety of length scales, due to the dynamic and fine interfacial structures, an Adaptive Mesh Refinement (AMR) framework for unstructured grids was incorporated. This multi-material multi-scale approach aims to reduce the numerical diffusion and preserve sharp interfaces. The presented numerical framework is validated for cases of bubble dynamics, under high and low ambient pressure ratios, shock-induced collapses, and wave transmission problems across a fluid–solid interface, against theoretical and numerical results. Three different configurations of shock-induced collapse applications near a kidney stone and soft tissue have been simulated for different stand-off distances and bubble attachment configurations. The obtained results reveal the detailed collapse dynamics, jet formation, solid deformation, rebound, primary and secondary shock wave emissions, and secondary collapse that govern the near-solid collapse and penetration mechanisms. Significant correlations of the problem configuration to the overall collapse mechanisms were found, stemming from the contact angle/attachment of the bubble and from the properties of solid material. In general, bubbles with their center closer to the kidney stone surface produce more violent collapses. For the soft tissue, the bubble movement prior to the collapse is of great importance as new structures can emerge which can trap the liquid jet into induced crevices. Finally, the tissue penetration is examined for these cases and a novel tension-driven tissue injury mechanism is elucidated, emanating from the complex interaction of the bubble/tissue interaction during the secondary collapse phase of an entrapped bubble in an induced crevice with the liquid jet.  相似文献   

5.
The objective of this paper is to numerically investigate the thermodynamic effect during bubble collapse near a rigid boundary. A compressible fluid model is introduced to accurately capture the transient process of bubble shapes and temperature, as well as corresponding pressure, and velocity. The accuracy of the numerical model is verified by the experimental data of bubble shapes, and Keller-Kolodner equation as well as its thermodynamic equation. The results show that a bubble near the rigid boundary presents high-speed jet in collapse stage and counter jet in rebound stage, respectively. In the collapse stage, the bubble margin will shrink rapidly and do the positive work on the compressible vapor inside the bubble, then a significant amount of heat will be generated, and finally the generation of high-speed jet drives the low-temperature liquid outside the bubble to occupy the position of high-temperature vapor inside the bubble. In the rebound stage, the counter jet moving away from the rigid boundary takes part of heat away from the sub-bubble, which avoids the external work of the expansion of the sub-bubble and the temperature reduction caused by the dissipation effect of the vortex structure. In addition, the initial standoff has a significant effect on the thermodynamics of bubble oscillation. The temperature keeps increasing with the increase of the initial standoff in the collapse stage, while it shows a downward trend with the increase of the initial standoff in the rebound stage. That’s because the high-speed jet and counter jet of bubble gradually disappear when the initial standoff increases, which is the important reason for the opposite evolution trend of temperature in collapse and rebound stage.  相似文献   

6.
魏梦举  陈力  伍涛  张鸿雁  崔海航 《物理学报》2017,66(16):164702-164702
受限空泡的溃灭是气泡动力学的核心问题,研究表明毫米尺度的空泡溃灭可以拉动附近同尺度的悬浮颗粒运动.本文针对受限空泡溃灭在微尺度下的行为开展研究,通过气泡驱动的球形微马达实验,给出了微气泡溃灭形成射流从而显著推动马达前进的现象,但由于溃灭时间很短,Micro PIV系统不能给出足够的流动细节.进而采用基于流体体积的数值手段模拟了这一过程,获得了流场的时空分布,并通过积分估算了微球获得的冲量,给出了微球所能达到的速度.结果表明这一问题与尺度密切相关,微尺度下空泡溃灭足以推动微球显著运动,在气泡尺寸固定的情况下,微球半径越小,微球与气泡间距离越近,推动的效果越明显.冲量定理则定性地解释了宏观尺度与微尺度下存在差异的原因.这一特殊的微流动问题不但扩展了空化研究的尺度范围,揭示了微尺度下空泡与颗粒作用的特性,而且对提高微马达的驱动效率也具有重要意义.  相似文献   

7.
The influence of a continuous sound field on the first oscillation cycle and on the cavitation luminescence of a transient laser-induced bubble is investigated experimentally. The variation of the collapse phase is predicted with a simple numerical model and compared with experiment. Bubble dynamics is mainly influenced by three parameters: the phase of bubble generation, the size of the bubble, and the amplitude of the sound field. The experimentally found enhancement and reduction of the luminescence is discussed and several suggestions are made for further boosting of the collapse strength.  相似文献   

8.
The dynamics of tandem bubble interaction in a microfluidic channel (800 × 21 μm, W?×?H) have been investigated using high-speed photography, with resultant fluid motion characterized by particle imaging velocimetry. A single or tandem bubble is produced reliably via laser absorption by micron-sized gold dots (6 μm in diameter with 40 μm in separation distance) coated on a glass surface of the microfluidic channel. Using two pulsed Nd:YAG lasers at λ?=?1064 nm and ~10 μJ/pulse, the dynamics of tandem bubble interaction (individual maximum bubble diameter of 50 μm with a corresponding collapse time of 5.7 μs) are examined at different phase delays. In close proximity (i.e., interbubble distance?=?40 μm or γ?=?0.8), the tandem bubbles interact strongly with each other, leading to asymmetric deformation of the bubble walls and jet formation, as well as the production of two pairs of vortices in the surrounding fluid rotating in opposite directions. The direction and speed of the jet (up to 95 m/s), as well as the orientation and strength of the vortices can be varied by adjusting the phase delay.  相似文献   

9.
A novel experimental method for the measurement of cavitation bubble dynamics is presented. The method makes use of a collimated cw HeNe laser beam that is focused onto a photodiode. A cavitation bubble centered in the laser beam leads to refraction and thus changes the diode signal. With sufficient temporal resolution of the measurement, the evolution of the bubble dynamics, and in particular, the collapse, could be well resolved (limitation is only due to diode response and oscilloscope bandwidth). In the present work this is demonstrated with cavitation bubbles generated with high-power nanosecond and femtosecond laser pulses, respectively. Bubble evolution is studied in two different liquids (water and glycerine) and at different temperatures and pressures.  相似文献   

10.
流体体积法(VOF)可以便捷、高效地实现对多相流界面的捕捉和追踪。本文基于VOF方法,对单个空化泡在曲面固壁附近的运动进行了数值模拟,从实验对比、压力场、速度场、温度场演化、溃灭时间、射流速度、固壁温度等方面分析了空化泡溃灭过程的热动力学影响。结果表明,数值模拟得到的空化泡形态演化与实验观测到的现象一致,随着位置参数、泡内外压差及曲面固壁尺寸的改变,空化泡热动力学行为也将发生变化,受到流体运动及射流冲击的影响,溃灭瞬间产生的高温高压使得曲面固壁温度升高。本文研究的曲面固壁附近空化泡溃灭效应,揭示了空化泡与曲面固壁间的相互作用规律,对学术研究及工程应用都具有重要意义。  相似文献   

11.
The removal of the adsorbed oil droplet is critical to deoiling treatment of oil-bearing solid waste. Ultrasonic cavitation is regarded as an extremely useful method to assist the oil droplets desorption in the deoiling treatment. In this paper, the effects of cavitation micro-jets on the oil droplets desorption were studied. The adsorbed states of oil droplets in the oil-contaminated sand were investigated using a microscope. Three representative absorbed states of the oil droplets can be summarized as: (1) the individual oil droplet adsorbed on the particle surface (2) the clustered oil droplets adsorbed on the particle surface; (3) the oil droplet adsorbed in a gap between particles. The micro-jet generation during the bubble collapse near a rigid wall under different acoustic pressure amplitudes at an ultrasonic frequency of 20 kHz was investigated numerically. The desorption processes of the oil droplets at the three representative absorbed states under micro-jets were also simulated subsequently. The results showed that the acoustic pressure has a great influence on the velocity of micro-jet, and the initial diameter of cavitation bubbles is significant for the cross-sectional area of micro-jets. The wall jet caused by a micro-jet impacting on the solid wall is the most important factor for the removal of the absorbed oil droplets. The oil droplet is broken by the jet impinging, and then it breaks away from the solid wall due to the shear force generated by the wall jet. In addition to a higher sound pressure, the cavitation bubble at a larger initial diameter is more important for the desorption of the clustered oil droplets. Conversely, the micro-jet generated by the cavitation bubble at a smaller initial diameter (0.1 mm) is more appropriate for the desorption of the oil droplet in a narrow or sharp-angled gap.  相似文献   

12.
Bubbles excited by lithotripter shock waves undergo a prolonged growth followed by an inertial collapse and rebounds. In addition to the relevance for clinical lithotripsy treatments, such bubbles can be used to study the mechanics of inertial collapses. In particular, both phase change and diffusion among vapor and noncondensable gas molecules inside the bubble are known to alter the collapse dynamics of individual bubbles. Accordingly, the role of heat and mass transport during inertial collapses is explored by experimentally observing the collapses and rebounds of lithotripsy bubbles for water temperatures ranging from 20 to 60 °C and dissolved gas concentrations from 10 to 85% of saturation. Bubble responses were characterized through high-speed photography and acoustic measurements that identified the timing of individual bubble collapses. Maximum bubble diameters before and after collapse were estimated and the corresponding ratio of volumes was used to estimate the fraction of energy retained by the bubble through collapse. The rebounds demonstrated statistically significant dependencies on both dissolved gas concentration and temperature. In many observations, liquid jets indicating asymmetric bubble collapses were visible. Bubble rebounds were sensitive to these asymmetries primarily for water conditions corresponding to the most dissipative collapses.  相似文献   

13.
The violent collapse of inertial bubbles generates high temperature inside and emits strong impulsive pressure. Previous tests on sonoluminescence and cavitation erosion showed that the influence of liquid temperature on these two parameters is different. In this paper, we conducted a bubble dynamic analysis to explore the mechanism of the temperature effect and account for the above difference. The results show that the increase of vapor at higher liquid temperatures changes both the external compression pressure and the internal cushion and is responsible for the variation of bubble collapse intensity. The different trends of the collapsing temperature and emitted sound pressure are caused by the energy distribution during the bubble collapse. Moreover, a series of simulations are conducted to establish the distribution map of the optimum liquid temperature where the collapse intensity is maximized. The relationship between the collapse intensity and the radial dynamics of the bubble is discussed and the reliable indicator is identified. This study provides a clear picture of how the thermodynamic process changes cavitation aggressiveness and enriches the understanding of this complex thermal-hydrodynamic phenomenon.  相似文献   

14.
Controlled cavitation in microfluidic systems   总被引:1,自引:0,他引:1  
We report on cavitation in confined microscopic environments which are commonly called microfluidic or lab-on-a-chip systems. The cavitation bubble is created by focusing a pulsed laser into these structures filled with a light-absorbing liquid. At the center of a 20 microm thick and 1 mm wide channel, pancake-shaped bubbles expand and collapse radially. The bubble dynamics compares with a two-dimensional Rayleigh model and a planar flow field during the bubble collapse is measured. When the bubble is created close to a wall a liquid jet is focused towards the wall, resembling the jetting phenomenon in axisymmetry. The jet flow creates two counter-rotating vortices which stir the liquid at high velocities. For more complex geometries, e.g., triangle- and square-shaped structures, the number of liquid jets recorded correlates with the number of boundaries close to the bubble.  相似文献   

15.
The dynamics of a micrometer-sized bubble pair in water near a rigid boundary under standing ultrasonic wave excitation is investigated in this study. The viscous effect in the boundary layer at the air-water interface is considered following the viscous correction model. The evolution of the bubble surface at the collapsing stage of the bubble pair is presented for different parameter sets. The field pressure near the rigid boundary, which is induced by the oscillating bubble pair, and the high-speed water jet at the collapse stage, form the main focus of the analysis. This reveals that a horizontal configuration of the bubble pair retards the strength of the bubble jet towards the boundary, whilst a vertical configuration, especially with differently-sized bubbles, can enhance the bubble collapse. This study may help to understand the interaction of multiple bubbles in an acoustic field and its application to surface cleaning.  相似文献   

16.
李玉同  张杰 《物理》2002,31(5):293-297
空泡广泛存在于自然界中,理论和实验表明,空泡在坍塌时可以将能量密度提高-10^12倍,发出皮秒级超短脉冲闪光,文章对液体介质中的空泡规律和常用研究方法进行了描述,主要内容包括空泡动力学、声致发光、冲击波产生、激光空泡及空泡应用前景介绍。  相似文献   

17.
It has recently been demonstrated that air bubbles released from a nozzle are excited into volume mode oscillations by the collapse of the neck of air formed at the moment of bubble detachment. A pulse of sound is caused by these breathing mode oscillations, and the sound of air-entraining flows is made up of many such pulses emitted as bubbles are created. This paper is an elaboration on a JASA-EL paper, which examined the acoustical excitation of bubbles released from a nozzle. Here, further details of the collapse of a neck of air formed at the moment of bubble formation and its implications for the emission of sound by newly formed bubbles are presented. The role of fluid surface tension was studied using high-speed photography and found to be consistent with a simple model for neck collapse. A re-entrant fluid jet forms inside the bubble just after detachment, and its role in acoustic excitation is assessed. It is found that for slowly-grown bubbles the jet does make a noticeable difference to the total volume decrease during neck collapse, but that it is not a dominant effect in the overall acoustic excitation.  相似文献   

18.
The objective of this paper is to apply both experimental and numerical methods to investigate acoustic waves induced by the oscillation and collapse of a single bubble. In the experiments, the schlieren technique is used to capture the temporal evolution of the bubble shapes, and the corresponding acoustic waves. The results are presented for the single bubble generated by a low-voltage bubble generator in the free field of water. During the numerical simulations, a three-dimensional (3D) weakly compressible model is introduced to investigate the single bubble dynamics, including the generation and propagation of acoustic waves. The results show that (1) Compression wave, rarefaction wave and shock wave are generated during expansion stage, collapse stage and rebound stage of the bubble respectively. (2) Compression waves are induced by the rapid expansion of the bubble and eventually steepen into one shock wave propagating outward in the liquid, then another strong shock wave is emitted at the final collapse stage. The velocity and pressure of the liquid field increases after the shock wave. (3) Rarefaction waves are generated during the collapse stage due to the contraction of the bubble. The rarefaction wave reduces the liquid pressure and its spatial distribution is dispersive. The pressure of these acoustic waves and their effect on the liquid velocity attenuate with the increase of propagation distance.  相似文献   

19.
圆锥边界附近激光空泡溃灭行为的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李贝贝  张宏超  韩冰  陈军  倪晓武  陆对 《物理学报》2012,61(17):174210-174210
为了研究刚性圆锥边界锥角对激光空泡溃灭行为的影响,文章建立了虚拟平面边界模型, 同时采用阴影摄影术、光偏转法以及数值计算的手段对边界附近空泡溃灭过程进行了研究. 结果表明边界的锥角对空泡的形状、溃灭时间以及液体射流形成均有明显影响. 空泡形状偏离球形的程度和溃灭时间均随锥角的增大而增大,且增大锥角度可以促使射流的形成. 空泡溃灭时间的实验值同理论值具有较高的一致性,验证了虚拟平面边界假设及无量纲距离修正的有效性.  相似文献   

20.
A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号