首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
In this study, ultrasound assisted dispersive solid-phase micro extraction combined with spectrophotometry (USA-DSPME-UV) method based on activated carbon modified with Fe2O3 nanoparticles (Fe2O3-NPs-AC) was developed for pre-concentration and determination of safranin O (SO). It is known that the efficiency of USA-DSPME-UV method may be affected by pH, amount of adsorbent, ultrasound time and eluent volume and the extent and magnitude of their contribution on response (in term of main and interaction part) was studied by using central composite design (CCD) and artificial neural network-genetic algorithms (ANN-GA). Accordingly by adjustment of experimental conditions suggested by ANN-GA at pH 6.5, 1.1 mg of adsorbent, 10 min ultrasound and 150 μL of eluent volume led to achievement of best operation performance like low LOD (6.3 ng mL−1) and LOQ (17.5 ng mL−1) in the range of 25–3500 ng mL−1. In following stage, the SO content in real water and wastewater samples with recoveries between 93.27–99.41% with RSD lower than 3% was successfully determined.  相似文献   

2.
Chromium doped zinc oxide nanoparticles (ZnO: Cr-NPs) was synthesized by ultrasonically assisted hydrothermal method and characterized by FE-SEM, XRD and TEM analysis. Subsequently, this composite ultrasonically assisted was deposited on activated carbon (ZnO: Cr-NPs-AC) and used for simultaneous ultrasound-assisted removal of three toxic organic dye namely of malachite green (MG), eosin yellow (EY) and Auramine O (AO). Dyes spectra overlap in mixture (major problem for simultaneous investigation) of this systems was extensively resolved by derivative spectrophotometric method. The magnitude of variables like initial dyes concentration, adsorbent mass and sonication time influence on dyes removal was optimized using small central composite design (CCD) combined with desirability function (DF) approach, while pH was studied by one-a-time approach. The maximized removal percentages at desirability of 0.9740 was set as follow: pH 6.0, 0.019 g ZnO: Cr-NPs-AC, 3.9 min sonication at 4.5, 4.8 and 4.7 mg L−1 of MG, EY and AO, respectively. Above optimized points lead to achievement of removal percentage of 98.36%, 97.24%, and 99.26% correspond to MG, EY and AO, respectively. ANOVA for each dyes based p-value less than (<0.0001) suggest highly efficiency of CCD model for prediction of data concern to simultaneous removal of these dyes within 95% confidence interval, while their F-value for MG, EY and AO is 935, 800.2, and 551.3, respectively, that confirm low participation of this them in signal. The value of multiple correlation coefficient R2, adjusted and predicted R2 for simultaneous removal of MG is 0.9982, 0.9972 and 0.9940, EY is 0.9979, 0.9967 and 0.9930 and for AO is 0.9970, 0.9952 and 0.9939. The adsorption rate well fitted by pseudo second-order and Langmuir model via high, economic and profitable adsorption capacity of 214.0, 189.7 and 211.6 mg g−1 for MG, EY and AO, respectively.  相似文献   

3.
Fe3O4/hydroxyapatite/graphene quantum dots (Fe3O4/HAP/GQDs) nanocomposite was synthesized and used as a novel magnetic adsorbent. This nanocomposite was characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetization property. The Fe3O4/HAP/GQDs was applied to pre-concentrate copper residues in Thai food ingredients (so-called “Tom Yum Kung”) prior to determination by inductively coupled plasma-atomic emission spectrometry. Based on ultrasound-assisted extraction optimization, various parameters affecting the magnetic solid-phase extraction, such as solution pH, amount of magnetic nanoparticles, adsorption and desorption time, and type of elution solvent and its concentration were evaluated. Under optimal conditions, the linear range was 0.05–1500 ng mL−1 (R2 > 0.999), limit of detection was 0.58 ng mL−1, and limit of quantification was 1.94 ng mL−1. The precision, expressed as the relative standard deviation of the calibration curve slope (n = 5), for intra-day and inter-day analyses was 0.87% and 4.47%, respectively. The recovery study of Cu for real samples was ranged between 83.5% and 104.8%. This approach gave the enrichment factor of 39.2, which guarantees trace analysis of Cu residues. Therefore, Fe3O4/HAP/GQDs can be a potential and suitable candidate for the pre-concentration and separation of Cu from food samples. It can easily be reused after treatment with deionized water.  相似文献   

4.
The present research focus on designing an appropriate dispersive solid-phase microextraction (UA-DSPME) for preconcentration and determination of Eriochrome Cyanine R (ECR) in aqueous solutions with aid of sonication using lead (II) dioxide nanoparticles loaded on activated carbon (PbO-NPs-AC). This material was fully identified with XRD and SEM. Influence of pH, amounts of sorbent, type and volume of eluent, and sonication time on response properties were investigated and optimized by central composite design (CCD) combined with surface response methodology using STATISTICA. Among different solvents, dimethyl sulfoxide (DMSO) was selected as an efficient eluent, which its combination by present nanoparticles and application of ultrasound waves led to enhancement in mass transfer. The predicted maximum extraction (100%) under the optimum conditions of the process variables viz. pH 4.5, eluent 200 μL, adsorbent dosage 2.5 mg and 5 min sonication was close to the experimental value (99.50%). at optimum conditions some experimental features like wide 5–2000 ng mL−1 ECR, low detection limit (0.43 ng mL−1, S/N = 3:1) and good repeatability and reproducibility (relative standard deviation, <5.5%, n = 12) indicate versatility in successful applicability of present method for real sample analysis. Investigation of accuracy by spiking known concentration of ECR over 200–600 ng mL−1 gave mean recoveries from 94.850% to 101.42% under optimal conditions. The procedure was also applied for the pre-concentration and subsequent determination of ECR in tap and waste waters.  相似文献   

5.
In this work, ultrasound-assisted adsorption of an anionic dye, sunset yellow (SY) and cationic dyes, malachite green (MG), methylene blue (MB) and their ternary dye solutions onto Cu@ Mn-ZnS-NPs-AC from water aqueous was optimized by response surface methodology (RSM) using the central composite design (CCD). The adsorbent was characterized using Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and EDX mapping images. The effects of various parameters such as pH, sonication time, adsorbent mass and initial concentrations of SY, MG and MB were examined. A total 33 experiments were conducted to establish a quadratic model. Cu@ Mn-ZnS-NPs-AC has the maximum adsorption efficiency (>99.5%) when the pH, sonication time, adsorbent mass and initial concentrations of SY, MG and MB were optimally set as 6.0, 5 min, 0.02 g, 9, 12 and 12 mg L−1, respectively. Sonication time has a statistically significant effect on the selected responses. Langmuir isotherm model was found to be best fitted to adsorption and adsorption capacities were 67.5 mg g−1 for SY, 74.6 mg g−1 for MG and 72.9 mg g−1 for MB. Four kinetic models (pseudo-first order, pseudo-second order, Weber–Morris intraparticle diffusion rate and Elovich) were tested to correlate the experimental data and the sorption was fitted well with the pseudo-second order kinetic model.  相似文献   

6.
Copper oxide nanoparticles loaded on activated carbon (CuO-NPs-AC) were prepared and fully analyzed and characterized with FE-SEM, XRD and FT-IR. Subsequently, this novel material was used for simultaneous ultrasound-assisted adsorption of brilliant green (BG), auramine O (AO), methylene blue (MB) and eosin yellow (EY) dyes. Problems regard to dyes spectra overlap in quaternary solution of this dyes were omitted by derivative spectrophotometric method. The best pH in quaternary system was studied by using one at a time method to achieved maximum dyes removal percentage. Subsequently, sonication time, adsorbent dosage and initial dyes concentrations influence on dyes removal was optimized by central composite design (CCD) combined with desirability function approach (DFA). Desirability score of 0.978 show optimum conditions set at sonication time (4.2 min), adsorbent mass (0.029 g), initial dyes concentration (4.5 mg L−1). Under this optimum condition the removal percentage for MB, AO, EY and BG dyes 97.58, 94.66, 96.22 and 94.93, respectively. The adsorption rate well fitted by pseudo second-order while adsorption capacity according to the Langmuir model as best equilibrium isotherm model for BG, MB, AO and EY was 20.48, 21.26, 22.34 and 21.29 mg g−1, respectively.  相似文献   

7.
A sensitive analytical method is investigated to concentrate and determine trace level of Sildenafil Citrate (SLC) present in water and urine samples. The method is based on a sample treatment using dispersive solid-phase micro-extraction (DSPME) with laboratory-made Mn@ CuS/ZnS nanocomposite loaded on activated carbon (Mn@ CuS/ZnS-NCs-AC) as a sorbent for the target analyte. The efficiency was enhanced by ultrasound-assisted (UA) with dispersive nanocomposite solid-phase micro-extraction (UA-DNSPME). Four significant variables affecting SLC recovery like; pH, eluent volume, sonication time and adsorbent mass were selected by the Plackett-Burman design (PBD) experiments. These selected factors were optimized by the central composite design (CCD) to maximize extraction of SLC. The results exhibited that the optimum conditions for maximizing extraction of SLC were 6.0 pH, 300 μL eluent (acetonitrile) volume, 10 mg of adsorbent and 6 min sonication time. Under optimized conditions, virtuous linearity of SLC was ranged from 30 to 4000 ng mL−1 with R2 of 0.99. The limit of detection (LOD) was 2.50 ng mL−1 and the recoveries at two spiked levels were ranged from 97.37 to 103.21% with the relative standard deviation (RSD) less than 4.50% (n = 15). The enhancement factor (EF) was 81.91. The results show that the combination UAE with DNSPME is a suitable method for the determination of SLC in water and urine samples.  相似文献   

8.
The ultrasound-assisted simultaneous adsorption of brilliant green (BG) and malachite green (MG) onto Mn-doped Fe3O4 nanoparticle-loaded activated carbon (Mn-Fe3O4-NP-AC) as a novel adsorbent was investigated and analyzed using first derivative spectrophotometry. The adsorbent was characterized using FT-IR, FE-SEM, EDX and XRD. Plackett–Burman design was applied to reduce the total number of experiments and to optimize the ultrasound-assisted simultaneous adsorption procedure, where pH, adsorbent mass and sonication time (among six tested variables) were identified as the most significant factors. The effects of significant variables were further evaluated by a central composite design under response surface methodology. The significance of independent variables and their interactions was investigated by means of the analysis of variance (ANOVA) within 95% confidence level together with Pareto chart. Using this statistical tool, the optimized ultrasound-assisted simultaneous removal of basic dyes was obtained at 7.0, 0.02 g, 3 min for pH, adsorbent mass, and ultrasonication time, respectively. The maximum values of BG and MG uptake under these experimental conditions were found to be 99.50 and 99.00%, respectively. The adsorption process was found to be followed by the Langmuir isotherm and pseudo-second order model using equilibrium and kinetic studies, respectively. According to Langmuir isotherm model, the maximum adsorption capacities of the adsorbent were obtained to be 101.215 and 87.566 mg g−1 for MG and BG, respectively. The value of apparent energy of adsorption obtained from non-linear Dubinin–Radushkevich model (4.348 and 4.337 kJ mol−1 for MG and BG, respectively) suggested the physical adsorption of the dyes. The studies on the well regenerability of the adsorbent in addition to its high adsorption capacity make it promising for such adsorption applications.  相似文献   

9.
γ-Fe2O3 nanoparticles were synthesized and loaded on activated carbon. The prepared nanomaterial was characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The γ-Fe2O3 nanoparticle-loaded activated carbon (γ-Fe2O3-NPs-AC) was used as novel adsorbent for the ultrasonic-assisted removal of methylene blue (MB) and malachite green (MG). Response surface methodology and artificial neural network were applied to model and optimize the adsorption of the MB and MG in their individual and binary solutions followed by the investigation on adsorption isotherm and kinetics. The individual effects of parameters such as pH, mass of adsorbent, ultrasonication time as well as MB and MG concentrations in addition to the effects of their possible interactions on the adsorption process were investigated. The numerical optimization revealed that the optimum adsorption (>99.5% for each dye) is obtained at 0.02 g, 15 mg L−1, 4 min and 7.0 corresponding to the adsorbent mass, each dye concentration, sonication time and pH, respectively. The Freundlich, Langmuir, Temkin and Dubinin–Radushkevich isotherms were studied. The Langmuir was found to be most applicable isotherm which predicted maximum monolayer adsorption capacities of 195.55 and 207.04 mg g−1 for the adsorption of MB and MG, respectively. The pseudo-second order model was found to be applicable for the adsorption kinetics. Blank experiments (without any adsorbent) were run to investigate the possible degradation of the dyes studied in presence of ultrasonication. No dyes degradation was observed.  相似文献   

10.
Magnetite (Fe3O4 nanoparticles (NPs)) HKUST-1 metal organic framework (MOF) composite as a support was used for surface imprinting of gallic acid imprinted polymer (HKUST-1-MOF-Fe3O4-GA-MIP) using vinyltrimethoxysilane (VTMOS) as the cross-linker. Subsequently, HKUST-1-MOF-Fe3O4-NPs-GA-MIP characterized by FT-IR, XRD and FE-SEM analysis and applied for fast and selective and sensitive ultrasound assisted dispersive magnetic solid phase microextraction of gallic acid (GA) by UV–Vis (UA-DMSPME-UV-Vis) detection method. Plackett–Burman design (PBD) and central composite design (CCD) according to desirability function (DF) indicate the significant variables among the extraction factors vortex (mixing) time (min), sonication time (min), temperature (°C), eluent volume (L), pH and HKUST-1-MOF-Fe3O4-NPs-GA-MIP mass (mg) and their contribution on the response. Optimum conditions and values correspond to pH, HKUST-1-MOF-Fe3O4-NPs-GA-MIP mass, sonication time and the eluent volume were set as follow 3.0, 1.6 mg, 4.0 min and 180 μL, respectively. The average recovery (ER%) of GA was 98.13% with desirability of 0.997, while the present method has best operational performance like wide linear range 8–6000 ng mL−1 with a Limit of detection (LOD) of 1.377 ng mL−1, limit of quantification (LOQ) 4.591 ng mL−1 and precision (<3.50% RSD). The recovery of GA in urine, human plasma and water samples within the range of 92.3–100.6% that strongly support high applicability of present method for real samples analysis, which candidate this method as promise for further application.  相似文献   

11.
In this research, a selective, simple and rapid ultrasound assisted dispersive solid-phase micro-microextraction (UA-DSPME) was developed using cobalt ferrite nanoparticles loaded on activated carbon (CoFe2O4-NPs-AC) as an efficient sorbent for the preconcentration and determination of Maxilon Red GRL (MR-GRL) dye. The properties of sorbent are characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Vibrating sample magnetometers (VSM), Fourier transform infrared spectroscopy (FTIR), Particle size distribution (PSD) and Scanning Electron Microscope (SEM) techniques. The factors affecting on the determination of MR-GRL dye were investigated and optimized by central composite design (CCD) and artificial neural networks based on genetic algorithm (ANN-GA). CCD and ANN-GA were used for optimization. Using ANN-GA, optimum conditions were set at 6.70, 1.2 mg, 5.5 min and 174 μL for pH, sorbent amount, sonication time and volume of eluent, respectively. Under the optimized conditions obtained from ANN-GA, the method exhibited a linear dynamic range of 30–3000 ng mL−1 with a detection limit of 5.70 ng mL−1. The preconcentration factor and enrichment factor were 57.47 and 93.54, respectively with relative standard deviations (RSDs) less than 4.0% (N = 6). The interference effect of some ions and dyes was also investigated and the results show a good selectivity for this method. Finally, the method was successfully applied to the preconcentration and determination of Maxilon Red GRL in water and wastewater samples.  相似文献   

12.
A two-step sample preparation technique based on dispersive micro solid-phase extraction combined with coacervative microextraction is presented for preconcentration and determination of tricyclic antidepressant drugs in biological samples. An important feature of the method is the application of hydrophobic magnetic nanoparticles, which in combination with coacervative microextraction method enables development of rapid and efficient extraction procedure in order to achievement of a high extraction efficiency. Simultaneous optimization by experimental design lead to improvement of method with low cost which supply useful information about interaction among variables. Under the optimized conditions, a linear range of 5–1000 ng mL−1 with detection limits from 0.51 to 1.4 ng mL−1 were obtained for target analytes. The method was successfully used for the determination of analytes in biological fluids (plasma and urine) with relative recoveries in the range of 89–105% (RSDs < 3.5%).  相似文献   

13.
In this work, a rapid and efficient procedure named ultrasound meliorated dispersive micro solid-phase extraction followed by high performance liquid chromatography-ultra violet detection (US-D-μSPE-HPLC-UV) was developed for the pre-concentration of the main trace anti-hypertensive drugs in complex matrices. The basis of this procedure was a polypyrrole-sodium dodecylbenzenesulfonate/zinc oxide (PPy-DBSNa/ZnO) nanocomposite. It was readily synthesized by the impressive way of in situ sonochemical oxidative polymerization in the presence of some additives such as FeCl3 and DBSNa, ultimately leading to the effective coating of PPy on the ZnO nanoparticle cores. Characterization of the proposed nanosorbent was performed by different techniques such as FESEM, XRD,EDX, and TGA, confirming the high quality and proper physico-chemical properties of the proposed sorbent. In order to better investigate the input variables, the central composite design (CCD) combined with the desirability function (DF) was utilized. The enriched optimum conditions consisted of the initial pH value of 11.8, 15 mg of the PPy-DBSNa/ZnO nanocomposite, a sonication time of 4.6 min, and 100 μL of methanol, resulting in maximum responses at a relatively low extraction time with a logical DF. Under the optimum conditions, good linearity (5–5000, 2.5–3500, and 2.5–3000 ng mL−1 for metoprolol, propranolol, and carvedilol, respectively, with the correlation of determinations (R2s) higher than 0.99), low limits of detection (LODs) (0.8–1.5 ng mL−1), proper repeatabilities (relative standard deviation values (RSDs) below 6.3%, n = 3), reasonable enrichment factors (EFs) (60–72), and good extraction recoveries (ERs) (higher than %75) were obtainable. These appropriate validations corroborated a good effectiveness of ultrasonic waves in the achievement of a supreme solid phase as well as a facile and efficient microextraction of the low therapeutic concentrations in human plasma and urine samples.  相似文献   

14.
Present study is devoted on the efficient application of Sn (O, S)-NPs -AC for simultaneous sonicated accelerated adsorption of some dyes from single and multi-components systems. Sn (O, S) nanoparticles characterization by FESEM, EDX, EDX mapping and XRD revel its nano size structure with high purity of good crystallinity. Present adsorbent due to its nano spherical shape particles with approximate diameter of 40–60 nm seems to be highly effective in this regard. The effects of five variables viz. pH (3.5–9.5), 0.010–0.028 g of adsorbent and 0.5–6.5 min mixing by sonication is good and practical conditions for well and expected adsorption of MB and CV over concentration range of 3–15 mg L−1. Combination of response surface methodology (RSM) based on central composite design (CCD) and subsequent of analysis of variance (ANOVA) and t-test statistics were used to test the significance of the independent variables and their interactions. Regression analysis reveal that experimental data with high repeatability and efficiency well represented by second-order polynomial model with coefficient of determination value of 0.9988 and 0.9976 for MB and CV, respectively following conditions like pH 8.0, 0.016 g adsorbent, 15 mg L−1 of both dyes 4 min sonication time is proportional with achievement of experimental removal percentage of 99.80% of MB and 99.87% of CV in batch experiment. Evaluation and estimation of adsorption data with Langmuir and Freundlich isotherm well justify the results based on their correlation coefficient and error analysis confirm that Langmuir model is good model with adsorption capacity of 109.17 and 115.34 mg g−1 in single system and 95.69 and 102.99 mg g−1 in binary system for MB and CV, respectively. MB and CV kinetic and rate of adsorption well fitted by pseudo-second order equation both in single and binary systems and experimental results denote more and favorable adsorption of CV than respective value in single system. The pseudo-second-order rate constant k2 in binary system larger than single system.  相似文献   

15.
The applicability of ZnS:Ni nanoparticles loaded on activated carbon derived from apple tree wood (ZnS:Ni-NPs-ACATW) for the adsorption of Methylene Blue (MB) and Janus Green B (JGB) dyes in single system from water solution has been described. The synthesized adsorbent characterized and identified by UV–Vis, FE-SEM, EDX, TEM, FTIR and XRD. The influences of operation parameters including initial MB or JGB concentration (9.0–33.0 mg L−1), pH (4.0–10.0), extent of adsorbent (0.08–0.12 g) and sonication time (4.0–8.0 min) investigated and subsequently best operational condition optimized by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF) using STATISTICA 10.0 software. At optimum conditions, maximum MB and JSB adsorption onto ZnS:Ni-NPs-ACATW, i.e. 99.57% ± 1.34 and 98.70% ± 2.01, respectively was achieved pH of 7.0, 0.11 g adsorbent, 14 and 28 mg L−1 of MB and JSB concentration respectively and 8 min sonication time. Experimental data were modelled by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherms. Langmuir isotherm and monolayer adsorption capacity of MB and JSB was found to be 21.79 and 28.01 mg g−1 respectively. The regression results strongly support more contribution of pseudo-second-order model for more accurate and repeatable representation of kinetic data. These results reveal that ZnS:Ni-NPs-ACATW could be useful as agents to efficiently remove dyes (JGB and MB) from contaminated water and can be very well recommended for wastewater remediation and control of environmental pollution.  相似文献   

16.
Ultrasound-assisted dispersive solid phase microextraction followed by UV–vis spectrophotometer (UA-DSPME-UV–vis) was designed for extraction and preconcentration of nicotinamide (vitamin B3) by HKUST-1 metal organic framework (MOF) based molecularly imprinted polymer (MIP). This new material was characterized by FTIR and FE-SEM techniques. The preliminary Plackett–Burman design was used for screening and subsequently the central composite design justifies significant terms and possible construction of mathematical equation which give the individual and cooperative contribution of variables like HKUST-1-MOF-NA-MIP mass, sonication time, temperature, eluent volume, pH and vortex time. Accordingly the optimum condition was set as: 2.0 mg HKUST-1-MOF-NA-MIP, 200 μL eluent and 5.0 min sonication time in center points other variables were determined as the best conditions to reach the maximum recovery of the analyte. The UA-DSPME-UV–vis method performances like excellent linearity (LR), limits of detection (LOD), limits of quantification of 10–5000 μg L−1 with R2 of 0.99, LOD (1.96 ng mL−1), LOQ (6.53 μg L−1), respectively show successful and accurate applicability of the present method for monitoring analytes with within- and between-day precision of 0.96–3.38%. The average absolute recoveries of the nicotinamide extracted from the urine, milk and water samples were 95.85–101.27%.  相似文献   

17.
The present paper focused on the ultrasonic assisted simultaneous removal of fast green (FG), eosin Y (EY) and quinine yellow (QY) from aqueous media following using MOF-5 as a metal organic framework and activated carbon hybrid (AC-MOF-5). The structure and morphology of AC-MOF-5 was identified by SEM, FTIR and XRD analysis. The interactive and main effects of variables such as pH, initial dyes concentration (mg L−1), adsorbent dosage (mg) and sonication time (min) on removal percentage were studied by central composite design (CCD), subsequent desirability function (DF) permit to achieved real variable experimental condition. Optimized values were found 7.06, 5.68, 7.59 and 5.04 mg L−1, 0.02 g and 2.55 min for pH, FG, EY and QY concentration, adsorbent dosage and sonication time, respectively. Under this conditions removal percentage were obtained 98.1%, 98.1% and 91.91% for FG, EY and QY, respectively. Two models, namely partial least squares (PLS) and multi-layer artificial neural network (ANN) model were used for building up to construct an empirical model to predict the dyes under study removal behavior. The obtained results show that ANN and PLS model is a powerful tool for prediction of under-study dyes adsorption by AC-MOF-5. The evaluation and estimation of equilibrium data from traditional isotherm models display that the Langmuir model indicated the best fit to the equilibrium data with maximum adsorption capacity of 21.230, 20.242 and 18.621 mg g−1, for FG, EY and QY, respectively, while the adsorption rate efficiently follows the pseudo-second-order model.  相似文献   

18.
A simple and sensitive spectrofluorimetric method was developed to determine trace amounts of bilirubin (BR) using yttrium (Y3+)–norfloxacin (NFLX) complex as a fluorescence (FL) probe. NFLX can form a stable binary complex with Y3+ and markedly enhances the weak FL signal of the NFLX. The FL intensity of the Y3+–NFLX complex decreased significantly in the presence of BR in a buffer solution at pH=7.2. Under optimal conditions, the FL intensity decreased according to the BR concentration and showed a good linear relationship in the range of 0.03–2.3 μg mL?1 of BR with a correlation coefficient of 0.9988. The limit of detection for the determination of BR was 2.8 ng mL?1 with a relative standard deviation (RSD) of 1.55% for five replicate determination of 0.05 μg mL-1 BR. The presented method offers higher sensitivity with simple instrumentation and was applied successfully in detecting BR at low concentrations.  相似文献   

19.
Activated carbon (AC) composite with HKUST-1 metal organic framework (AC–HKUST-1 MOF) was prepared by ultrasonically assisted hydrothermal method and characterized by FTIR, SEM and XRD analysis and laterally was applied for the simultaneous ultrasound-assisted removal of crystal violet (CV), disulfine blue (DSB) and quinoline yellow (QY) dyes in their ternary solution. In addition, this material, was screened in vitro for their antibacterial actively against Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAO1) bacteria. In dyes removal process, the effects of important variables such as initial concentration of dyes, adsorbent mass, pH and sonication time on adsorption process optimized by Taguchi approach. Optimum values of 4, 0.02 g, 4 min, 10 mg L−1 were obtained for pH, AC–HKUST-1 MOF mass, sonication time and the concentration of each dye, respectively. At the optimized condition, the removal percentages of CV, DSB and QY were found to be 99.76%, 91.10%, and 90.75%, respectively, with desirability of 0.989. Kinetics of adsorption processes follow pseudo-second-order model. The Langmuir model as best method with high applicability for representation of experimental data, while maximum mono layer adsorption capacity for CV, DSB and QY on AC–HKUST-1 estimated to be 133.33, 129.87 and 65.37 mg g−1 which significantly were higher than HKUST-1 as sole material with Qm to equate 59.45, 57.14 and 38.80 mg g−1, respectively.  相似文献   

20.
In this study dependency of simultaneous adsorption of Congo Red (CR), Phloxine B (BP) and Fast green FCF (FG) onto CuS/ZnS nanocomposites loaded on activated carbon (CuS/ZnS-NCs-AC) to pH, adsorbent mass, sonication time and initial dyes concentration were modeled and optimized, while CuS/ZnS-NCs-AC was identified by XRD, FESEM and EDS analysis. CR, PB and FG concentration determination were undertaken by first and second order derivative spectrophotometry in ternary mixture. According to central composite design (CCD) based on desirability function (DF), the best experimental conditions was set as pH 6.0, 0.02 g CuS/ZnS-NCs-AC, 5 min sonication time, 15 mg L−1 for PB and 10 mg L−1 for other dyes. Conduction of experiments to above conditions lead to highest dyes removal efficiency of 99.72, 98.8 and 98.17 for CR, PB and FG, respectively. The adsorption data efficiently fitted by Langmuir isotherm model, while the order of maximum adsorption capacity (Qmax) for PB (128.21 mg g−1) > CR (88.57 mg g−1) > FG (73.40 mg g−1) is related to their different structure and charges. Kinetics of process was efficiently explained according to pseudo-second-order kinetic in cooperation of Weber and Morris based on intraparticle diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号