首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study explores the spectral emissivity modeling of steel 201 during the growth of oxidation film over the temperature range from 800 to 1100 K at 1.5 μm. The radiance coming from the specimen is received by an InGaAs photodiode detector. The specimen temperature is obtained by averaging the two platinum–rhodium thermocouples, which are tightly welded in the front surface of specimen near the measuring area viewed by the detector. The variation of spectral emissivity with the temperature is studied at a given heating time. The variation of spectral emissivity with the heating time is evaluated at a definite temperature. The strong oscillations of spectral emissivity are observed and discussed in detail, which originate from the interference effect between the radiation stemming from the oxidization film on the specimen surface and the radiation coming from the specimen surface. The measurement uncertainties of spectral emissivity contributed only by the surface oxidization are about 3.2–14.1%. At a given heating time, the variation of spectral emissivity with the temperature abides well by a simple analytic functional form. And at a definite temperature, the variation of spectral emissivity with the heating time can also be well reproduced by fitting except for the periodical oscillations.  相似文献   

2.
This work strived to model the effect of surface oxidization and nitridation on the normal spectral emissivity of Ti–6Al–4V alloys at a temperature range of 800–1100 K and a wavelength of 1.5 μm. In experiments, the detector was as close to perpendicular to the surface of the specimens as possible so that only the normal spectral emissivity was measured. Two thermocouples were symmetrically welded near the measuring area for accurate measuring and monitoring of the temperature at the surface of the specimen. The specimens were heated for 6 h at a certain temperature. During this period, the normal spectral emissivity values were measured once every 1 min during the initial 180 min, and once every 2 min thereafter. The measurements were made at certain temperatures from 800 to 1100 K in intervals of 20 K. One strong oscillation in the normal spectral emissivity was observed at each temperature. The oscillations were formed by the interference between the radiation stemming from the oxidization and nitridation layer on the specimen surface and radiation from the substrate. The uncertainty in the normal spectral emissivity caused only by the surface oxidization and nitridation was found to be approximately 9.5–22.8%, and the corresponding uncertainty in the temperature generated only by the surface oxidization and nitridation was approximately 6.9–15.5 K. The model can reproduce well the normal spectral emissivity, including the strong oscillation that occurred during the initial heating period.  相似文献   

3.
Effect of surface oxidization on the spectral emissivity of brass is studied over the temperature range from 800 to 1070 K at the wavelength of 1.5 μm. The temperature of brass surface is measured by averaging the two R-type platinum–rhodium thermocouples. The radiant energy emitted by the brass surface is received by an InGaAs photodiode detector. Two kinds of relationships between the spectral emissivity and the temperature are investigated in the oxidizing environment at the elevated temperature. One is the variation of spectral emissivity with the heating-duration time at the given temperature. The other is the variation of spectral emissivity with the temperature at the given heating-duration time. The interference effect of radiation coming from the brass surface and coming from the oxidization film is discussed when the oxidation film on the surface is grown. The resonant structures of spectral emissivity are observed during the whole heating period, in particular at the early stage of heating duration. The analytic formula of spectral emissivity versus the temperature is derived at the heating-duration time of 30, 60, 90, 120, 150, 180, 210, 240, 270 and 300 min, respectively. The conclusion is obtained that coefficients of analytic expressions between the spectral emissivity and the temperature are different from each other for the experimental results obtained at the different heating-duration time, though the polynomial functional form is suitable to fit all the measurements obtained in the present work.  相似文献   

4.
In a previous work, we succeeded in connecting normal LWIR apparent emissivity to the spectral one of an aluminum nitride ceramic plate. The key problem was the knowledge of the effective spectral bandwidth in use in the system. Hence we have developed an analyzer which permits to identify the spectral bandwidth of IR system using only its raw data. It proceeds by minimizing the dispersion from linearity of the characteristic thermosignals/integrated radiance over a temperature range of the IR system. The capacities of the analyzer are tested for five commercial cameras. Each of these systems exhibits a similar formatting process implemented during the thermogram recording. The effective spectral bandwidth shows plausible values. It varies significantly from one model to the other and the residual non-linearity is connected to the NETD of the IR system. The robustness of the apparent emissivity measurements is also tested with the aid of emissivity reference of 0.5. The overall accuracy of the method is less than 1%, depending on the specular or diffuse part of the reflected irradiation. Applied in field situation, the method is suitable to detect absolute variation of emissivity of less than 6  10−3. We use the analyzer to determine the spectral bandwidth of a commercial 320 × 240 microbolometer uncooled IRFPA camera which had already served to characterize the normal LWIR apparent emissivity of the aluminum nitride ceramic plate. By using the spectral response of the two major microbolometer sensor technologies, the general formulation of apparent emissivity matches our apparent emissivity measurements. An agreement better than 0.6% in absolute value and a less than 6  10−3%/°C dispersion are found over the entire temperature range [40–130 °C].  相似文献   

5.
A multi-band pyrometry model is developed to evaluate the potential of measuring temperature and emissivity of assumably gray target surfaces at 300 K. Twelve wavelength bands between 2 and 60 μm are selected to define the spectral characteristics of the pyrometers. The pyrometers are surrounded by an enclosure with known background temperature. Multi-band pyrometry modeling results in an overdetermined system of equations, in which the solution for temperature and emissivity is obtained through an optimization procedure that minimizes the sum of the squared residuals of each system equation. The Monte Carlo technique is applied to estimate the uncertainties of temperature and emissivity, resulting from the propagation of the uncertainties of the pyrometers. Maximum reduction in temperature uncertainty is obtained from dual-band to tri-band systems, a small reduction is obtained from tri-band to quad-band, with a negligible reduction above quad-band systems (a reduction between 6.5% and 12.9% is obtained from dual-band to quad-band systems). However, increasing the number of bands does not always reduce uncertainty, and uncertainty reduction depends on the specific band arrangement, indicating the importance of choosing the most appropriate multi-band spectral arrangement if uncertainty is to be reduced. A reduction in emissivity uncertainty is achieved when the number of spectral bands is increased (a reduction between 6.3% and 12.1% is obtained from dual-band to penta-band systems). Besides, emissivity uncertainty increases for pyrometers with high wavelength spectral arrangements. Temperature and emissivity uncertainties are strongly dependent on the difference between target and background temperatures: uncertainties are low when the background temperature is far from the target temperature, tending to very high values as the background temperature approaches the target temperature.  相似文献   

6.
Amin Malekmohammadi 《Optik》2012,123(20):1862-1866
For the first time to the best of our knowledge the effect of guard band (GB) on the performance of 40 Gb/s Absolute Polar Duty Cycle Division Multiplexing (AP-DCDM) over a single wavelength and wavelength division multiplexing (WDM) are investigated and reported. It is demonstrated that the spectral width occupied by 40 Gb/s AP-DCDM with GB is 100 GHz (with minimum spectral efficiency of 0.4 b/s/Hz) whereas, this value can be reduced to around 80 GHz for AP-DCDM without GB (with minimum spectral efficiency of 0.5 b/s/Hz). In addition to better spectral efficiency, this amount of saving in the spectral width leads to ~60 ps/nm improvement in chromatic dispersion tolerance. In this paper, characteristics of AP-DCDM with and without GB over WDM system are compared at the speed of 40 Gbit/s per WDM channel, for the tolerance to narrow optical filtering and minimum allowed channel spacing. The AP-DCDM without GB has narrower spectral width than AP-DCDM with GB, which makes its implementation in WDM system advantageous.  相似文献   

7.
We have established a principal possibility of changes of the light reflectivity at the wavelength of 633 nm (He–Ne laser) under influence of the external laser light. The changes are very sensitive to the wavelength of the photoinduced laser. We have chosen two types of the photoinduced lasers: UV nitrogen 7 ns laser at wavelength 371 nm heating near the absorption edge and the 10 ns 1064 nm Nd:YAG laser with wavelength 1064 nm. The power dependences of the reflectivity were studied. Possible explanation of the observed effects is presented following the conception of the nano-trapping levels. These results have been obtained from two ZnO thin films prepared from principally different deposition parameters leading to different particle features and morphologies.  相似文献   

8.
光谱发射率是一个重要的热物性参数,在辐射测温、热传输计算等领域有着广泛的应用。钨作为一种重要的金属,关于其光谱发射率的研究报道较少。利用黑体炉、傅里叶红外光谱仪、加热装置和光学系统搭建了一套能量对比法光谱发射率测量装置,该装置能够测量3~20μm的光谱发射率,测量装置的整体不确定度优于5%。利用该装置测量了纯钨在4个温度点(573, 673, 773和873 K)的法向光谱发射率,重点探讨了氧化、温度、波长和加热时间对纯钨光谱发射率的影响。研究结果表明:纯钨在表面未氧化的情况下,光谱发射率在几个温度点的变化规律基本一致,且数值相差较小,而当其表面发生氧化后光谱发射率迅速增加,在某些波长处出现了强烈的振荡。表面未氧化时纯钨的光谱发射率受温度的影响较小,随着温度的增加仅出现微小的增加,但是当表面发生氧化后,随温度的升高而迅速增大。纯钨的光谱发射率整体上随着波长的增加而减小,但是当表面发生氧化后,由于表面氧化膜与钨金属基底发生干涉效应,在4, 9, 12.5和16.5μm处均出现了峰值。在573和673 K,纯钨的光谱发射率随着加热时间的增加无明显变化。然而,随着温度的升高,在773和873 K时,光谱发射率随着加热时间增加而增大,在773 K时光谱发射率随加热时间的增加增幅较大,因为在该温度点,纯钨表面刚开始发生氧化,氧化速率较大,在873 K时光谱发射率随加热时间的增加增幅较为平缓,并且随着加热时间的增长呈现稳定的趋势。综上,纯钨的光谱发射率在温度较低和表面未氧化时较为稳定。随着温度的升高,当表面发生氧化后,光谱发射率迅速增大,并且在多个波长位置出现了强烈的振荡。由此可见,纯钨光谱发射率受温度、波长、加热时间的影响较大,在实际应用过程中,特别是在辐射测温过程中,如果把纯钨的光谱发射率看做常数将会带来较大的测量误差。该研究将进一步丰富钨的光谱发射率数据,并为其在科学研究和应用中提供数据支持。  相似文献   

9.
We demonstrate a passively Q-switched all-solid-state laser system with intracavity Raman frequency conversion to the eye-safe spectral region. Laser oscillation at the 1.064 μm wavelength with a pulse repetition rate of several kilohertz was provided by a Nd:YAG crystal and a Cr:YAG passive absorber. Third Stokes oscillations at the 1.599 and 1.494 μm wavelengths were obtained in Ba(NO3)2 and PbWO4 crystals with output pulse energies of 5 μJ and 6 μJ, respectively. The results of the numerical simulation of the pulse dynamics are in good agreement with the experimental data.  相似文献   

10.
The laser properties of 1.3 μm spectral region in Nd:YAG crystal and their simultaneous dual wavelength threshold condition are investigated. Three types of high power 1.3-μm Nd:YAG quasi continuous wave (QCW) lasers, which operate at 1.319 μm or 1.338 μm single wavelength, 1.319 μm and 1.338 μm simultaneous dual wavelength, are achieved with a maximum average output power of 138 W, 132 W and 120 W, respectively.  相似文献   

11.
Indium tin oxide (ITO) films as the low emissivity coatings of Ni-based alloy at high temperature were studies. ITO films were deposited on the polished surface of alloy K424 by direct current magnetron sputtering. These ITO-coated samples were heat-treated in air at 600–900 °C for 150 h to explore the effect of high temperature environment on the emissivity. The samples were analyzed by X-ray diffraction (XRD), SEM and EDS. The results show that the surface of sample is integrity after heat processing at 700 °C and below it. A small amount of fine crack is observed on the surface of sample heated at 800 °C and Ti oxide appears. There are lots of fine cracks on the sample annealed at 900 °C and a large number of various oxides are detected. The average infrared emissivities at 3–5 μm and 8–14 μm wavebands were tested by an infrared emissivity measurement instrument. The results show the emissivity of the sample after annealed at 600 and 700 °C is still kept at a low value as the sample before annealed. The ITO film can be used as a low emissivity coating of super alloy K424 up to 700 °C.  相似文献   

12.
Bright optical soliton propagation properties near the left band edge of photonic crystal waveguide (PCW) are numerically investigated. Compared with the normal PCW with air background, by employing polystyrene as PCW background and adjusting the structure parameters simultaneously, the required soliton peak power sharply decreases from 8.63 × 106 W/m to 9.98 × 102 W/m. The influence of optical loss on soliton propagation is numerically investigated. The dynamic modulation of the soliton propagation in PCW is realized, and a modulation range of 459 nm wavelength for the soliton transmission has been achieved. Simulation results show that the transmission wavelength, required soliton peak power and delay time decrease almost linearly as the external modulated voltage increases; the modulation sensitivities are 8.316 nm/V, 3.416 W/m/V and 16.6 ps/V, respectively.  相似文献   

13.
A thermal radiative inverse method was used to determine the high-temperature spectral properties of an ultraviolet fused silica from transmittance data for wavelengths from 0.8 to 5 µm. A developed FTIR system used to measure apparent transmittances of the fused silica sample has been designed and built. In order to reduce the system error caused by detector emission and stray radiation, a measurement strategy at high temperatures was proposed. For deriving spectral transport properties from experimental transmittances, the parameter identification principle was described. The results show that spectral properties are both wavelength dependent and temperature dependent. Spectral refractive indexes rise with increasing temperature and decrease with wavelength. Three absorption peaks of spectral absorptive indices respectively at about 1.4 µm, 2.22 µm and 2.75 µm shift toward the far infrared region and vary differently with increasing temperature. In addition, three absorption bands all become broader for temperatures from 20 °C to 900 °C.  相似文献   

14.
Time-resolved infrared spectra of firings from a 152 mm howitzer were acquired over an 1800–6000 cm?1 spectral range using a Fourier-transform spectrometer. The instrument collected primarily at 32 cm?1 spectral and 100 Hz temporal resolutions. Munitions included unsuppressed and chemically flash suppressed propellants. Secondary combustion occurred with unsuppressed propellants resulting in flash emissions lasting ~100 ms and dominated by H2O and CO2 spectral structure. Non-combusting plume emissions were one-tenth as intense and approached background levels within 20–40 ms. A low-dimensional phenomenological model was used to reduce the data to temperatures, soot absorbances, and column densities of H2O, CO2, CH4, and CO. The combusting plumes exhibit peak temperatures of ~1400 K, areas of greater than 32 m2, low soot emissivity of ~0.04, with nearly all the CO converted to CO2. The non-combusting plumes exhibit lower temperatures of ~1000 K, areas of ~5 m2, soot emissivity of greater than 0.38 and CO as the primary product. Maximum fit residual relative to peak intensity are 14% and 8.9% for combusting and non-combusting plumes, respectively. The model was generalized to account for turbulence-induced variations in the muzzle plumes. Distributions of temperature and concentration in 1–2 spatial regions demonstrate a reduction in maximum residuals by 40%. A two-region model of combusting plumes provides a plausible interpretation as a ~1550 K, optically thick plume core and ~2550 K, thin, surface-layer flame-front. Temperature rate of change was used to characterize timescales and energy release for plume emissions. Heat of combustion was estimated to be ~5 MJ/kg.  相似文献   

15.
A compact, low cost, high speed, non-destructive testing NIR (near infrared) spectrometer optical system based on MOEMS grating device is developed. The MOEMS grating works as the prismatic element and wavelength scanning element in our optical system. The MOEMS grating enables the design of compact grating spectrometers capable of acquiring full spectra using a single detector element. This MOEMS grating is driven by electromagnetic force and integrated with angle sensor which used to monitored deflection angle while the grating working. Comparing with the traditional spectral system, there is a new structure with a single detector and worked at high frequency. With the characteristics of MOEMS grating, the structure of the spectrometer system is proposed. After calculating the parameters of the optical path, ZEMAX optical software is used to simulate the system. According the ZEMAX output file of the 3D model, the prototype is designed by SolidWorks rapidly, fabricated. Designed for a wavelength range between 800 nm and 1500 nm, the spectrometer optical system features a spectral resolution of 16 nm with the volume of 97 mm × 81.7 mm × 81 mm. For the purpose of reduce modulated effect of sinusoidal rotation, spectral intensity of the different wavelength should be compensated by software method in the further. The system satisfies the demand of NIR micro-spectrometer with a single detector.  相似文献   

16.
The spectral interference of polarization modes in a highly birefringent (HB) fiber to measure temperature is analyzed theoretically and experimentally. A tandem configuration of a birefringent delay line and a sensing HB fiber is considered and the spectral interferograms are modelled for the known birefringence dispersion of the HB fiber under test. As the delay line, a birefringent quartz crystal of a suitable thickness is employed to resolve a channeled spectrum. The channeled spectra are recorded for different temperatures and the polarimetric sensitivity to temperature, determined in the spectral range from 500 to 850 nm, is decreasing with wavelength. It is demonstrated that the temperature sensing is possible using the wavelength interrogation, i.e., the position of a given interference maximum is temperature dependent. The temperature sensitivity of the HB fiber under test is −0.25 nm/K and the resolution is better than 0.5 K.  相似文献   

17.
We present transition probabilities (Einstein's A values) for 38 Ar III (doubly ionized argon) and 14 Ar IV (triply ionized argon) spectral lines from the wavelength interval 240–308 nm. Considered spectral lines are recorded in laboratory pulsed discharge. The relative line intensity ratio procedure has been applied in evaluation of transition probabilities. As a reference for transition probability evaluation we have chosen A value of 241.884 nm spectral line in Ar III spectrum and A value of 280.947 nm in Ar IV spectrum, both obtained theoretically. Careful analysis of experimental and existing theoretical data is conducted in order to deduce uncertainties. Presented Ar III and Ar IV A values are for the first time obtained relying on experimental data.  相似文献   

18.
The multi-waveband temperature sensor (MWTS) array, in which each super-pixel (2 × 2 pixel cell) operates at four distinct thermal infrared (IR) wavebands is being developed. Using this high spatial resolution, four-band thermal IR band detector array, accurate temperature measurements on the surface of an object can be made without prior knowledge of its exact emissivity. This multi-band detector involves intersubband transition in III–V semiconductor-based quantum layered structures. Each detector stack absorbs photons within the specified wavelength band while allowing the transmission of photons in other spectral bands, thus efficiently permitting multi-band detection. This produces multiple, spectrally resolved images of the scene that are recorded simultaneously in a single snapshot on the FPA. From the multispectral images and calibration information about the system, computational algorithms are used to evaluate the temperature on the surface of a target.  相似文献   

19.
Experimental results of a study on the wavelength dependence and the dynamic range of the quadratic response of commercial grade light emitting diodes (LEDs) are reported over a broad spectral range of 680 nm to 1080 nm using ~ 100 fs duration laser pulses from cw mode locked laser oscillator. A large dynamic range of the quadratic response has been demonstrated in a reverse biased LED. The observed dynamic range compares well with that obtained using a biased photomultiplier tube with large internal gain.  相似文献   

20.
The aim of this study was to evaluate the effects of power ultrasound intensity (PUS, 2.39, 6.23, 11.32 and 20.96 W cm−2) and treatment time (30, 60, 90 and 120 min) on the oxidation and structure of beef proteins during the brining procedure with 6% NaCl concentration. The investigation was conducted with an ultrasonic generator with the frequency of 20 kHz and fresh beef at 48 h after slaughter. Analysis of TBARS (Thiobarbituric acid reactive substances) contents showed that PUS treatment significantly increased the extent of lipid oxidation compared to static brining (P < 0.05). As indicators of protein oxidation, the carbonyl contents were significantly affected by PUS (P < 0.05). SDS–PAGE analysis showed that PUS treatment increased protein aggregation through disulfide cross-linking, indicated by the decreasing content of total sulfhydryl groups which would contribute to protein oxidation. In addition, changes in protein structure after PUS treatment are suggested by the increases in free sulfhydryl residues and protein surface hydrophobicity. Fourier transformed infrared spectroscopy (FTIR) provided further information about the changes in protein secondary structures with increases in β-sheet and decreases in α-helix contents after PUS processing. These results indicate that PUS leads to changes in structures and oxidation of beef proteins caused by mechanical effects of cavitation and the resultant generation of free radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号