首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
As-prepared gold nanorods, stable in aqueous solution, bear a bilayer of the cationic surfactant cetyltrimethylammonium bromide (CTAB). This bilayer provides a approximately 3 nm thick hydrophobic layer that could be used to sequester hydrophobic organic molecules from aqueous solution. We have investigated the uptake of 1-naphthol as a model hydrophobic compound by CTAB-coated gold nanorods using both ultraviolet-visible spectroscopy and gas chromatography with flame ionization detection. We find the adsorption isotherm of 1-naphthol partitioning into the CTAB bilayer on gold nanorods fits the Langmuir model. The maximum number of bound 1-naphthol molecules is 14.6 +/- 2.2 x 10(3) molecules per gold nanorod, with an equilibrium binding constant of 1.97 +/- 0.79 x 10(4) M(-1) at room temperature.  相似文献   

2.
Oriented assembly of Au nanorods using biorecognition system   总被引:1,自引:0,他引:1  
The design and formation of a linear assembly of gold nanorods using a biomolecular recognition system are described. Anti-mouse IgG was immobilized on the {111} end faces of gold nanorods through a thioctic acid containing a terminal carboxyl group. The biofunctionalized nanorods can be assembled with the desired length using mouse IgG for biorecognition and binding. The gold nanorods can be assembled to extended nanorod chains, which can be as long as 3 microm. These assembled nanostructures may be used as the precursors for future nanodevices.  相似文献   

3.
Capillary assembly was explored for the precise placement of 25 nm × 70 nm colloidal gold nanorods on prestructured poly(dimethylsiloxane) template surfaces. The concentration of nanorods and cationic surfactant cetyltrimethylammonium bromide (CTAB), the template wettability, and most critically the convective transport of the dispersed nanorods were tuned to study their effect on the resulting assembly yield. It is shown that gold nanorods can be placed into arrayed 120-nm diameter holes, achieving assembly yields as high as 95% when the local concentration of nanorods at the receding contact line is sufficiently high. Regular arrays of gold nanorods have several benefits over randomly deposited nanorod arrangements. Each assembled nanorod resides at a precisely defined location and can easily be found for subsequent characterization or direct utilization in a device. The former is illustrated by collecting scattering spectra from single nanorods and nanorod dimers, followed by subsequent SEM characterization without the need for intricate registration schemes.  相似文献   

4.
We report herein biotin-streptavidin-mediated aggregation studies of long gold nanorods. We have previously demonstrated end-to-end linkages of gold nanorods driven by the biotin-streptavidin interaction (Caswell et al. J. Am. Chem. Soc. 2003, 125, 13914). In that report, the specific binding of biotin disulfide to the gold nanorod edges was achieved due to the preferred binding of thiol molecules to the Au[111] surface (gold nanorod ends) as opposed to the gold nanorod side faces. This led to the end-end linkage of gold nanorods upon subsequent addition of streptavidin. In this report we demonstrate a simple procedure to biotinylate the entire gold nanorod surface and subsequently form a 3-D assembly by addition of streptavidin. Gold nanorods were synthesized by the three-step seeding protocol documented in our previous articles. The surface of gold nanorods was further modified by a layer of a weak polyelectrolyte, poly(acrylic acid), PAA. A biotin molecule which has an amine group at one end (biotin-PEO-amine) was anchored to the carboxylic acid group of the polyelectrolyte using the well-known carbodiimide chemistry. This process biotinylates the entire gold nanorod surface. Addition of streptavidin further leads to aggregation of gold nanorods. A closer look at the aggregates reveals a preferential side-to-side assembly of gold nanorods. The gold nanorods were characterized at each stage by UV-vis spectroscopy, light scattering, and transmission electron microscopy (TEM) measurements.  相似文献   

5.
Gold nanorods are anisotropic and exhibit different optical characteristics in both transverse and longitudinal directions, so the plasmon resonance in the near‐infrared region will reflect two absorption peaks. Because of strong enhancements of electromagnetic fields of gold nanorods, gold nanorods are widely used in medical treatment, biological detection, sensors, solar cells and other fields. Since rapid developments of gold nanorods, it is necessary to sort out the recent achievements. In this review, we select three classifications of single nanorods/nanowires, dimers and assembled nanorods to introduce their syntheses methods, optical properties and applications respectively. We firstly overview the history of nanorods/nanowires syntheses and summarize the improvement of the commonly utilized seed‐mediated growth synthesis method; and then, physically, nano‐plasmonic and optical properties of single and assembled nanorod/nanowires are concluded in detail. Lastly, we mainly summarize the recent advances in applications and provide perspective in different fields.  相似文献   

6.
Guven B  Boyacı İH  Tamer U  Çalık P 《The Analyst》2012,137(1):202-208
In this study, a new method combining magnetic separation (MS) and surface-enhanced Raman scattering (SERS) was developed to detect genetically modified organisms (GMOs). An oligonucleotide probe which is specific for 35 S DNA target was immobilized onto gold coated magnetic nanospheres to form oligonucleotide-coated nanoparticles. A self assembled monolayer was formed on gold nanorods using 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) and the second probe of the 35 S DNA target was immobilized on the activated nanorod surfaces. Probes on the nanoparticles were hybridized with the target oligonucleotide. Optimization parameters for hybridization were investigated by high performance liquid chromatography. Optimum hybridization parameters were determined as: 4 μM probe concentration, 20 min immobilization time, 30 min hybridization time, 55 °C hybridization temperature, 750 mM buffer salt concentration and pH: 7.4. Quantification of the target concentration was performed via SERS spectra of DTNB on the nanorods. The correlation between the target concentration and the SERS signal was found to be linear within the range of 25-100 nM. The analyses were performed with only one hybridization step in 40 min. Real sample analysis was conducted using Bt-176 maize sample. The results showed that the developed MS-SERS assay is capable of detecting GMOs in a rapid and selective manner.  相似文献   

7.
We report the immobilization of gold nanorods onto self-assembled monolayers (SAMs) of 16-mercaptohexadecanoic acid (16-MHA). The simple two step protocol involves formation of a SAM of 16-MHA molecules onto gold-coated glass slides and subsequent immersion of these slides into the gold nanorod solution. The nanorods, formed by a seed-mediated, surfactant-assisted synthesis protocol, are stabilized in solution due to surface modification by the surfactant cetyltrimethylammonium bromide (CTAB). Attractive electrostatic interactions between the carboxylic acid group on the SAM and the positively charged CTAB molecules are likely responsible for the nanorod immobilization. UV-vis spectroscopy has been used to follow the kinetics of the nanorod immobilization. The nature of interaction between the gold nanorods and the 16-MHA SAM has been probed by Fourier transform infrared spectroscopy (FTIR). The surface morphology of the immobilized rods is studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements. SEM was also used to determine the density of the immobilized nanorods as a function of the pH of immobilization. Control over the surface coverage of the immobilized gold nanorods has been demonstrated by simple pH variation. Such well-dispersed immobilized gold nanorods with control over the surface coverage could be interesting substrates for applications such as surface-enhanced Raman spectroscopy (SERS).  相似文献   

8.
The shape anisotropy of nanorods gives rise to two distinct orientational modes by which nanorods can be assembled, i.e., end-to-end and side-by-side, analogous to the well-known H and J aggregation in organic chromophores. Optical absorption spectra of gold nanorods have earlier been observed to show a red-shift of the longitudinal plasmon band for the end-to-end linkage of nanorods, resulting from the plasmon coupling between neighboring nanoparticles, similar to the assembly of gold nanospheres. We observe, however, that side-by-side linkage of nanorods in solution shows a blue-shift of the longitudinal plasmon band and a red-shift of the transverse plasmon band. Optical spectra calculated using the discrete dipole approximation method were used to simulate plasmon coupling in assembled nanorod dimers. The longitudinal plasmon band is found to shift to lower energies for end-to-end assembly, but a shift to higher energies is found for the side-by-side orientation, in agreement with the optical absorption experiments. The strength of plasmon coupling was seen to increase with decreasing internanorod distance and an increase in the number of interacting nanorods. For both side-by-side and end-to-end assemblies, the strength of the longitudinal plasmon coupling increases with increasing nanorod aspect ratio as a result of the increasing dipole moment of the longitudinal plasmon. For both the side-by-side and end-to-end orientation, the simulation of a dimer of nanorods having dissimilar aspect ratios showed a longitudinal plasmon resonance with both a blue-shifted and a red-shifted component, as a result of symmetry breaking. A similar result is observed for a pair of similar aspect ratio nanorods assembled in a nonparallel orientation. The internanorod plasmon coupling scheme concluded from the experimental results and simulations is found to be qualitatively consistent with the molecular exciton coupling theory, which has been used to describe the optical spectra of H and J aggregates of organic molecules. The coupled nanorod plasmons are also suggested to be electromagnetic analogues of molecular orbitals. Investigation of the plasmon coupling in assembled nanorods is important for the characterization of optical excitations and plasmon propagation in these nanostructures. The surface plasmon resonance shift resulting from nanorod assembly also offers a promising alternative for analyte-sensing assays.  相似文献   

9.
A square pattern of thioctic acid self-assembled ZnO nanorod arrays was grown on a large 4-in. thermoplastic polyurethane (TPU) flexible substrate via an in situ soluthermal process at low temperature (348 K). With the addition of dimercaptosuccinic acid (DMSA), the surface chemistry forms a disordered ZnO phase, and the morphology of the ZnO-DMSA nanorods changes with various DMSA addition times. As evidenced by the Zn2p3/2, C1s, O1s, S2p, and N-1s scans of X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), DMSA and proteins were conjugated on the single crystalline ZnO nanorods. The photoluminescence (PL) spectra indicated that the optical properties of ZnO nanorod arrays were changed while the DMSA was inserted, and proteins were conjugated. Furthermore, a control test found that the ZnO nanorods show a significant improvement in sensitive characterization over the ZnO film. As another proteins (e.g., human serum albumin, HSA) were bound onto the ZnO-bovine serum albumin (BSA) nanorod arrays, an enhanced ultraviolet emission intensity was detected. On the basis of these results, one might be expected to conjugate specific biomolecules on the biofunctional ZnO nanorod arrays to detect the complementary biomolecules by PL detecting.  相似文献   

10.
The principles of colorimetric detecting oligonucleotides with the help of gold nanospheres and nanorods are discussed. Marker sequences of fragments of HIV-1 genome and Bacillus anthracis are used as models. Experimental data are reported that demonstrate the influence of gold nanorod morphology on the reproducibility of colorimetric tests. A new method is proposed for detecting oligonucleotides based on the application of positively charged gold nanospheres in combination with absorption spectroscopy and dynamic light scattering. Charge reversal of negatively charged gold nanospheres is implemented through the bilayer adsorption of cetyltrimethylammonium bromide molecules. The sensitivity of the proposed method is comparable with the detection of DNA sequences via the colorimetric protocol using nanorods, but it is more simple and stable from the viewpoint of realization. It is shown that the colorimetric tests using gold nanorods and nanospheres do not provide reliable information on the presence of single- and three-base mismatches in target oligonucleotides.  相似文献   

11.
Organo-soluble porphyrin mixed monolayer-protected gold nanorods were synthesized and characterized. The resulting gold nanorods encapsulated by both porphyrin thiol and alkyl thiol on their entire surface with strong covalent Au-S linkages were very stable in organic solvents without aggregation or decomposition and exhibited unique optical properties different from their corresponding spherical ones. Alkyl thiol acts as a stabilizer not only to fill up the potential space on gold nanorod surface between bulky porphyrin molecules but also to provide space for further insertion of C(60) molecules forming a stable C(60)-porphyrin-gold nanorod hybrid nanostructure.  相似文献   

12.
Truong PL  Cao C  Park S  Kim M  Sim SJ 《Lab on a chip》2011,11(15):2591-2597
Herein, we present the use of a single gold nanorod sensor for detection of diseases on an antibody-functionalized surface, based on antibody-antigen interaction and the localized surface plasmon resonance (LSPR) λ(max) shifts of the resonant Rayleigh light scattering spectra. By replacing the cetyltrimethylammonium bromide (CTAB), a tightly packed self-assembled monolayer of HS(CH(2))(11)(OCH(2)CH(2))(6)OCH(2)COOH(OEG(6)) has been successfully formed on the gold nanorod surface prior to the LSPR sensing, leading to the successful fabrication of individual gold nanorod immunosensors. Using prostate specific antigen (PSA) as a protein biomarker, the lowest concentration experimentally detected was as low as 111 aM, corresponding to a 2.79 nm LSPR λ(max) shift. These results indicate that the detection platform is very sensitive and outperforms detection limits of commercial tests for PSA so far. Correlatively, its detection limit can be equally compared to the assays based on DNA biobarcodes. This study shows that a gold nanorod has been used as a single nanobiosensor to detect antigens for the first time; and the detection method based on the resonant Rayleigh scattering spectrum of individual gold nanorods enables a simple, label-free detection with ultrahigh sensitivity.  相似文献   

13.
An important challenge in molecular assembly and hierarchical molecular engineering is to control and program the directional self‐assembly into chiral structures. Here, we present a versatile DNA surface adapter that can programmably self‐assemble into various chiral supramolecular architectures, thereby regulating the chiral directional “bonding” of gold nanorods decorated by the surface adapter. Distinct optical chirality relevant to the ensemble conformation is demonstrated from the assembled novel stair‐like and coil‐like gold nanorod chiral metastructures, which is strongly affected by the spatial arrangement of neighboring nanorod pair. Our strategy provides new avenues for fabrication of tunable optical metamaterials by manipulating the directional self‐assembly of nanoparticles using programmable surface adapters.  相似文献   

14.
We have investigated optical properties of single gold nanorods by using an apertured-type scanning near-field optical microscope. Near-field transmission spectrum of single gold nanorod shows several longitudinal surface plasmon resonances. Transmission images observed at these resonance wavelengths show oscillating pattern along the long axis of the nanorod. The number of oscillation increases with decrement of observing wavelength. These spatial characteristics were well reproduced by calculated local density-of-states maps and were attributed to spatial characteristics of plasmon modes inside the nanorods. Dispersion relation for plasmons in gold nanorods was obtained by plotting the resonance frequencies of the plasmon modes versus the wave vectors obtained from the transmission images.  相似文献   

15.
Three‐dimensional (3D) hydroxyapatite (HAP) hierarchical nanostructures, in particular hollow nanostructures, have attracted much attention owing to their potential applications in many biomedical fields. Herein, we report a rapid microwave‐assisted hydrothermal synthesis of a variety of hydroxyapatite hierarchical nanostructures that are constructed by the self‐assembly of nanorods or nanosheets as the building blocks, including HAP nanorod‐assembled hierarchical hollow microspheres (HA‐NRHMs), HAP nanorod‐assembled hierarchical microspheres (HA‐NRMs), and HAP nanosheet‐assembled hierarchical microspheres (HA‐NSMs) by using biocompatible biomolecule pyridoxal‐5′‐phosphate (PLP) as a new organic phosphorus source. The PLP molecules hydrolyze to produce phosphate ions under microwave‐hydrothermal conditions, and the phosphate ions react with calcium ions to form HAP nanorods or nanosheets; then, these nanorods or nanosheets self‐assemble to form 3D HAP hierarchical nanostructures. The preparation method reported herein is time‐saving, with microwave heating times as short as 5 min. The HA‐NRHMs consist of HAP nanorods as the building units, with an average diameter of about 50 nm. The effects of the experimental conditions on the morphology and crystal phase of the products are investigated. The hydrolysis of PLP under microwave‐hydrothermal conditions and the important role of PLP in the formation of 3D HAP hierarchical nanostructures are investigated and a possible formation mechanism is proposed. The products are explored for potential applications in protein adsorption and drug delivery. Our experimental results indicate that the HA‐NRHMs have high drug/protein‐loading capacity and sustained drug‐release behavior. Thus, the as‐prepared HA‐NRHMs are promising for applications in drug delivery and protein adsorption.  相似文献   

16.
We demonstrate seedless synthesis of gold nanorods at high temperatures up to 97 degrees C. Using the correct silver nitrate concentration is crucial for formation of rod-shaped particles at all temperatures. We observed a decrease of nanorod length with increasing temperature, while the width stays constant throughout the temperature range. From kinetics studies, we show 3 orders of magnitude increase in nanorod growth rate when the temperature is raised from room temperature to 97 degrees C. From the temperature dependence of the growth rate, we obtain a average activation energy for growth on all facets of 90 +/- 10 kJ mol(-1). High-temperature synthesis of gold nanorods presents a more attractive method for scalable flow-based production of gold nanorods.  相似文献   

17.
Plasmon mode imaging of single gold nanorods   总被引:5,自引:0,他引:5  
We have investigated two-photon-induced photoluminescence images and spectra of single gold nanorods by using an apertured scanning near-field optical microscope. The observed PL spectrum of single gold nanorod can be explained by the radiative recombination of the electron-hole pair near the X and L symmetry points. PL images reveal characteristic features reflecting an eigenfunction of a specific plasmon mode as well as electric field distributions around the nanorod.  相似文献   

18.
The noncovalent binding of the antitumour drugs daunomycin and nogalamycin to duplex DNA has been studied using electrospray ionisation mass spectrometry (ESI-MS). The conditions for the preparation of drug/duplex DNA complexes and for their detection by ESI-MS have been optimised. Ions corresponding to these complexes were most abundant relative to free DNA when prepared in the pH range 8-9, and using gentle ESI interface conditions. Self-complementary oligonucleotides, 5'-d(GGCTAGCC)-3' or 5'-d(CGGCGCCG)-3', annealed in the presence of a 5-fold molar excess of either nogalamycin or daunomycin gave ESI mass spectra in which the most intense ions corresponded to three molecules of drug bound to duplex DNA, with some evidence for four drug molecules bound. For binding to 5'-d(TGAGCTAGCTCA)(2)-3', complexes containing up to four nogalamycin and six daunomycin molecules were observed. These data are consistent with the neighbour exclusion principle whereby intercalation occurs between every other base pair such that up to four bound drugs would be expected for the 8 mers and up to six for the 12 mer. Competition experiments involving a single drug in an equimolar mixture of two oligonucleotides (5'-d(TGAGCTAGCTCA)(2)-3' with either 5'-d(CGGCGCCG)(2)-3' or 5'-d(GGCTAGCC)(2)-3') showed ions arising from complexes of drug/5'-d(CGGCGCCG)(2)-3' were more intense than complexes of drug/5'-d(GGCTAGCC)(2)-3', relative to those from the 12 mer in each mixture. While this suggests ESI-MS has the potential to detect differences in sequence selectivity, more detailed experiments involving a comparison of the relative ionisation efficiency of different oligonucleotides and a wider range of intercalators are required to establish this definitively. ESI mass spectra from experiments in which both drugs were reacted with the same oligonucleotide were more complex, such that a clear preference for one drug could not be established.  相似文献   

19.
A chemical procedure to replace the cetyltrimethylammonium bromide (CTAB) cap on gold nanorods (GNRs) fabricated through seed-mediated growth with organothiol compounds [3-animo-5-mercapto-1,2,4-triazole (AMTAZ) and 11-mercaptoundecaonic acid (MUDA)] was developed to reduce the cytotoxity of GNRs and facilitate further biofunctionalization. Compared to phosphatidylcholine (PC) modification, our procedure yields stable GNRs that are biocompatible and suitable for whole-cell studies. The PC-, AMTAZ-, and MUDA-activated GNRs all showed low cytotoxicity. By choosing different organothiols, net positive or negative charges could be created on the nanorod surface, for different applications. Gold nanorod molecular probes (GNrMPs) were fabricated by subsequent attachment of antibodies to the activated GNRs and were used to visualize and detect cell surface biomarkers in normal and transformed human breast epithelial cells, demonstrating the potential of developing novel biosensors using gold nanorods. The sensitivity of GNrMPs made from organothiol-activated GNRs is considerably higher than that of CTAB/PC-activated GNRs, demonstrating that the protocol reported here is favored in developing molecular probes using GNRs.  相似文献   

20.
Azide-derivatized gold nanorods: functional materials for "click" chemistry   总被引:4,自引:0,他引:4  
We describe herein the synthesis of functional gold nanorods suitable for carrying out "click" chemistry reactions. Gold nanorods modified with a copolymer containing sulfonate and maleic acid groups have been conjugated to a bifunctional azide molecule (amine-PEG-azide). The maleic acid molecules in the copolymer participate in carbodiimide-mediated amide bond formation with amine groups of the azide linker, whereas the sulfonate groups prevent nanorod aggregation in water. Spectroscopic and zeta-potential measurements have been used to confirm the successful surface modification of the gold nanorods. These azide-functionalized nanorods can carry out chemical reactions based on click chemistry. As a case study, we have demonstrated the "clicking" of azide-nanorods to an acetylene-functionalized enzyme, trypsin, by a copper-catalyzed 1,3-dipolar cycloaddition reaction. The enzyme is not only stable after bioconjugation but is also biologically active, as demonstrated by its digestion of the protein casein. For comparison, the biological activity of trypsin conjugated to gold nanorods by two other commonly used methods (carbodiimide-mediated covalent attachment via amide bond formation and simple electrostatic adsorption) has been studied. The enzyme conjugated by click chemistry demonstrates improved biological activity compared with other forms of bioconjugation. This general and simple approach is easy, specific with higher yields, environmentally benign, and applicable to a wide range of analytes and biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号