首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 338 毫秒
1.
2.
The infrared spectra of the 2ν1, 2ν2 and 2ν3 overtones of perchloryl fluoride, FClO3, have been recorded at high resolution using monoisotopic pure samples. Four symmetric top species have been investigated: F35Cl16O3, F37Cl16O3, F35Cl18O3 and F37Cl18O3. The vi = 2, i = 1, 2, 3 vibrationally excited states are totally symmetric, so these overtones correspond to parallel bands of medium/weak intensity, centered from 2010 to 2120 cm−1 (2ν1), from 1390 to 1430 cm−1 (2ν2) and from 1070 to 1100 cm−1 (2ν3). Most of the bands are unperturbed and their analysis was straightforward. The band origins, the rotational and centrifugal molecular constants in the v1 = 2, v2 = 2 and v3 = 2 states have been determined, with standard deviations of the fits from 0.00024 to 0.00067 cm−1. The 2ν1 overtones of F35Cl16O3 and F37Cl16O3 are perturbed by an A1/E Coriolis resonance between the v1 = 2 state and one E component of the v4 = 1, v6 = 2 manifold. The 2ν2 of F37Cl18O3 is perturbed by the same kind of interaction involving the v1 = v6 = 1 (E) state, at about 1396 cm−1. In these bands the resonance is localized on rotational levels with specific J and K values. As a consequence, a few transitions of the perpendicular bands involving the interacting levels could be identified in the spectra. A simultaneous fit of the transitions assigned to the dyads has been performed and the parameters of the excited states have been determined, including the high order Coriolis interaction coefficient . The anharmonic constants x11, x22, x33 of all the studied isotopologues of FClO3, x46 of F35Cl16O3, x46 + g46 of F37Cl16O3 and x16 of F37Cl18O3, have been derived.  相似文献   

3.
The high resolution infrared spectrum of mono-isotopic F37Cl16O3 has been studied in the regions of ν1, ν2, ν4 and ν2 + ν5 bands, centered at 1060.20, 707.16, 1301.71 and 1292.15 cm−1, respectively. The ν1 and ν2 parallel bands are unperturbed so their analysis was straightforward and 3355 and 2433 transitions were assigned, respectively. The band origins, the rotational and centrifugal molecular constants in the v1 = 1 and v2 = 1 states have been determined, with standard deviation of the fits σ = 0.00019 and 0.00018 cm−1. The ν4 fundamental is affected by an anharmonic resonance with the ν2 + ν5 combination band. The kl > 0 sublevels cross at kl ? 27 because of the opposite values of and . The anharmonic resonance constant  cm−1 has been derived. The Δl = Δk = ±2 and Δl = 0, Δk = ±3 essential resonances have been found to be effective in ν4, while in ν2 + ν5 only the Δl = Δk = ±2 one was active. A total of 5721 transitions have been assigned, 25% of them belonging to ν2 + ν5. The rovibrational parameters and the interaction constants of F37Cl16O3 have been obtained. The standard deviation of the fit is 0.0006 cm−1, six times the estimated data precision. The equilibrium geometry of perchloryl fluoride has been determined from the Ae and Be constants of F35Cl16O3 and F37Cl16O3. Using the A0 and B0 constants of all the symmetric species the r0 geometry has also been derived.  相似文献   

4.
Previous studies of the parallel bands 2ν2 and 50 of CH3Br by the two first authors have been completed by the analysis of the weaker perpendicular band ν2 + ν5, centered near 2745 cm?1. It is well known that the v2 = 1 and v5 = 1 states of methylbromide are linked by an x-y-type Coriolis interaction. Therefore, in the 2500–2900-cm?1 range, the levels
(v2=2), (v52, l5=0), (v5=2, l5±2), (v5=v2=1, l=5±1)
are linked by a similar interaction. Least-squares and prediction programs have been written to treat this kind of problems and they have been satisfactorily applied to both isotopic species, CH379Br and CH381Br. A localized resonance in the K = 0 subband of ν2 + ν5 has been shown to be due to the 3ν3 + ν6 band. No evidence for a strong Fermi resonance between ν1 and 50 has been found.  相似文献   

5.
The P-H stretching bands ν1/ν5 and 2ν1/ν1+ν5 were recorded using a Bruker 120 HR interferometer with a resolution of 0.0042 and 0.0088 cm−1, respectively, and analyzed. From the fits 33 and 50, respectively, vibrational, rotational, centrifugal distortion, and resonance interaction parameters were obtained. These reproduce 668 and 497 rovibrational energies of the pairs of states ν1/ν5 and 2ν1/ν1+ν5 with experimental accuracies, rms=0.00016 and , respectively. “Local mode” behavior of the PH2 fragment is established and discussed in detail.  相似文献   

6.
The Fourier transform gas-phase IR spectrum of 1,3,4-thiadiazole, C2H2N2S, has been recorded with a resolution of ca. 0.003 cm−1 in the 800-1500 cm−1 spectral region. Five fundamental bands ν2(A1; 1391.9 cm−1), ν4(A1; 964.4 cm−1), ν5(A1; 894.6 cm−1), ν9(B1; 821.5 cm−1), and ν14(B2; 898.4 cm−1) have been analysed using the Watson model. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from fits. The ν4 and ν9 bands are unperturbed while a strong c-Coriolis resonance perturbs the close-lying ν5 and ν14 bands. This dyad system has been analysed by a model including first and second order c-Coriolis resonance using the theoretically predicted Coriolis coupling constant . The ν2 band is strongly perturbed by a local resonance, and we obtain a set of spectroscopic parameters using a model including second order a-Coriolis resonance with the inactive ν10 + ν14 band. Ground state rotational and quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational α-constants predicted by quantum chemical calculations using a cc-pVTZ basis and B3LYP methodology, have been compared with the present experimental data, where there is generally good agreement.  相似文献   

7.
The far infrared and infrared spectra of formamide (HCONH2) have been recorded at high resolution (0.00125 cm−1) in the region of 90-1060 cm−1. Over 20,000 transitions from the out-of-plane NH2 wagging motion (n12 = 1 ← 0 fundamental, n12 = 2 ← 0 overtone, n12 = 2 ← 1 difference bands), torsion (n11 = 1 ← 0 bands), and out-of-phase NCO/NH2 bend (n9 = 1 ← 0 bands) have been assigned. Molecular parameters have been obtained for the ground state and the unperturbed n12 = 1 state. The least-squares fit calculations were completed with the microwave data available in the literature. The complicated resonance system between the n12 = 2, n11 = 1, and n9 = 1 states has been investigated carefully. Thus, we have been able to verify almost all resonances (avoided crossing) existing in the region J, K investigated. In the coupled Hamiltonian used for the fit, all Watson’s reduced parameters, including the octic ones and 16 Coriolis coupling parameters were taken into account. The rms deviation obtained from the fit was 0.000247 cm−1.  相似文献   

8.
The Fourier transform gas-phase IR spectrum of 1,2,3-thiadiazole, C2H2N2S, has been recorded with a resolution of ca. 0.003 cm−1 in the 700-1100 cm−1 spectral region. Four fundamental bands ν6(A/; 1101.8 cm−1), ν7(A/; 1038.8 cm−1), ν9(A/, 858.9 cm−1), and ν13(A//; 746.2 cm−1) have been analyzed using the Watson model in A-reduction. Two additional bands, ν8 (A/; 894.6 cm−1) and ν12(A//; 881.2 cm−1) were assigned by their weak Q-branches. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from fits. A number of weak global and local interactions are present in the bands. The resonances identified were qualitatively explained by Coriolis type perturbations with neighboring levels. Ground state rotational and quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational α-constants predicted by quantum chemical calculations using a cc-pVTZ basis and B3LYP methodology, have been compared with the present experimental data, where there is generally good agreement.  相似文献   

9.
The infrared spectrum of propynal, C2HCHO, is studied at high resolution (0.003 cm−1) in the range 570-640 cm−1. The relatively intense ν11 (CC-H out-of-plane bend, 693 cm−1) and ν7 (CC-H in-plane bend, 651 cm−1) fundamental bands are linked by a strong a-type Coriolis interaction. The somewhat weaker ν8 (CCO in-plane bend, 614 cm−1) fundamental has a significant Fermi-type interaction with the “dark” background state 3ν9 (∼618 cm−1). About 1400 lines are assigned and analyzed in terms of a four-state fit in order to obtain accurate band origins, rotational and centrifugal distortion parameters, and Fermi and Coriolis interaction parameters. This represents the first systematic high-resolution infrared study of propynal.  相似文献   

10.
The high-resolution (0.0030 cm−1) Fourier transform infrared spectrum of CH279BrF has been studied in part of the atmospheric window between 910 and 980 cm−1, the region of the ν9 (935.847 cm−1) and ν5 + ν6 (961.239 cm−1) bands. The ν9 fundamental consists of a pseudo a-type band induced by Coriolis coupling with ν5 + ν6, in turn exhibiting a predominant a-type structure. Several interactions connecting these levels and the dark state 3ν6 have been assessed. The whole data set is treated using Watson’s A-reduced Hamiltonian in the Ir representation implemented with first order a- and b- and c-type Coriolis terms. A detailed analysis of the rotational structure yields a set of accurate upper-state parameters up to quartic distortion terms for ν9 and ν5 + ν6. In addition, spectroscopic information about the dark ternary overtone of ν6 has been obtained.  相似文献   

11.
For the first time the infrared spectrum of the AsHD2 molecule has been measured in the region of the bending fundamental bands ν3, ν4, and ν6 on a Fourier transform spectrometer with a resolution of 0.0024 cm−1 and analyzed. More than 5500 transitions with Jmax = 26 have been assigned and used both to obtain “ground state combination differences” and for the determination of upper state ro-vibrational energies of the triad (001000), (000100), and (000001). Rotational parameters including centrifugal distortion coefficients up to octic terms of the ground vibrational state were calculated by fitting more than 500 “ground state combination differences” with Jmax and . The obtained set of 24 parameters provides a rms-deviation of 0.00011 cm−1. The upper energies were fitted with 52 parameters of an effective Hamiltonian which takes into account strong resonance interactions between all vibrational states of the triad (001000), (000100), and (000001). The rms-deviation for the energy levels considered in the fit is 0.00014 cm−1.  相似文献   

12.
Nitric acid which is an important NOx atmospheric reservoir molecule exhibits a strong absorption in the spectral region. Since this region, which corresponds to an atmospheric window, is one of the most commonly used for the retrieval of HNO3 in the atmosphere it is essential to have the best possible corresponding spectral parameters. Updates of these spectral line parameters were recently performed in the last versions of the atmospheric databases. They concern the line positions and intensities not only of the two interfering cold bands ν5 and 2ν9 but also of the ν5+ν9ν9 hot band. This hot band exhibits indeed a sharp and strong Q branch at which is clearly observable in atmospheric spectra and is used for the retrievals. However, in spite of these recent updates, it proved that the spectral parameters of the hot band are not accurate enough to reproduce accurately the observed atmospheric HNO3 absorption in ATMOS spectra. The present paper is dedicated to a more accurate analysis of this hot band using new laboratory high-resolution (0.002-) Fourier transform spectra. As a consequence, new and more precise line positions and line intensities (about 35% weaker than in HITRAN2K) were derived leading to a significant improvement in the simulation of atmospheric spectra.  相似文献   

13.
Rotationally resolved vibrational spectra of the three lowest frequency bands of the four-membered heterocycle azetidine (c-C3H6NH) have been collected with a resolution of 0.00096 cm−1 using the far infrared beamline at the Canadian Light Source synchrotron. The modes observed correspond principally to motions best described as: β-CH2 rock (ν14) at 736.701310(7) cm−1, ring deformation (ν15) at 648.116041(8) cm−1, and the ring puckering mode (ν16) at 207.727053(9) cm−1. A global fit of 14 276 rovibrational transitions from the three bands provided an accurate set of ground state spectroscopic constants as well as excited state parameters for each of the three vibrational modes. The ground state structure was determined to be that of the puckered conformer having the NH bond in an equatorial arrangement.  相似文献   

14.
H2-broadening coefficients are measured for 41 transitions of PH3 in the QR branch of the ν2 band and the PP, RP, and PQ branches of the ν4 band, using a tunable diode-laser spectrometer. The recorded lines with J values ranging from 2 to 16 and K from 0 to 11 are located between 995 and . The collisional widths are determined by fitting each spectral line with a Voigt profile, a Rautian profile, and a speed-dependent Rautian profile. The latter model provides larger broadening coefficients than the Voigt model. These coefficients γ0(J,K) are found to decrease slightly on the whole as J increases and they decrease significantly for K values approaching or equal to J(J?4). The H2-broadenings are also calculated on the basis of a semiclassical model of interacting linear molecules, using an atom-atom Lennard-Jones potential in addition to the weak electrostatic contributions. The theoretical results are in satisfactory agreement with the experimental data and reproduce the J and K dependencies of the broadenings, but the decrease observed for the QR(J,K) transitions with K=J is notably overestimated.  相似文献   

15.
The infrared spectral regions of the P-D stretching fundamental band ν2 and the first overtone band 2ν2 of PH2D were recorded with a resolution of 2.7×10−3 and , respectively. In the analysis about 710 and 440 transitions were assigned to the ν2 and 2ν2 bands. These provided 358 and 268 upper rovibrational energy terms, respectively. Resonance interactions between the states (010000) and (000200) were taken into account in the Hamiltonian used to fit upper energies of the (010000) state. The rovibrational energies of the (020000) state were fitted with a Hamiltonian for an isolated vibrational state.  相似文献   

16.
We report the first high resolution rovibrational analysis of the infrared spectrum of pyrimidine (C4H4N2) based on measurements using our Fourier transform spectrometer, the Bruker IFS 125 HR Zürich Prototype (ZP) 2001. Measurements were conducted at room temperature in a White-type cell with effective optical path lengths between 3.2 and 9.6 m and with resolutions ranging from 0.0008 to 0.0018 cm−1 in the region between 600 and 1000 cm−1. The spectrum was analyzed in the ν4 (), ν10b () and ν6b regions of pyrimidine () using an effective Hamiltonian. A total of about 15 000 rovibrational transitions were assigned. The root mean square deviations of the fitted data are in the ranges drms = 0.00018-0.00024 cm−1, indicating an excellent agreement of experimental line data with the calculations. The results are discussed briefly in relation to possible extensions to spectra of DNA bases and to intramolecular vibrational redistribution at higher energy. The analysis of the ν10b and ν4 bands will also be useful in the interstellar search for pyrimidine in the infrared region.  相似文献   

17.
The necessity to revisit water spectroscopy at 6 μm was prompted by recent work indicating that some prior measurements of H216O line strengths (ranging through seven orders of magnitude) had larger than expected systematic errors for the stronger transitions. To investigate this, linestrengths of stronger transitions were re-measured (with 14 new H2O spectra recorded with a Bruker 125 HR Fourier transform spectrometer at the Jet Propulsion Laboratory) and combined with re-analyzed prior results (obtained at higher optical densities from 32 spectra recorded with the FTS at Kitt Peak). Systematic differences for some of the older data sets were identified and corrected. In this paper, an internally-consistent sampling of 1243 selected line strengths are reported for (0 1 0)-(0 0 0) and (0 2 0)-(0 1 0) transitions between 783 and 2378 cm−1. To confirm experimental precisions, observed and calculated line strengths are compared.  相似文献   

18.
The Fourier transform infrared spectrum of gaseous thiophene, C4H4S, has been recorded in the 600-1200 cm−1 spectral region with a resolution of ca. 0.0030 cm−1. Five fundamental bands ν13 (B1, 712.1 cm−1), ν7 (A1; 840.0 cm−1), ν6 (A1; 1036.4 cm−1), ν5 (A1; 1081.5 cm−1) and ν19 (B2; 1084.0 cm−1) have been analysed by the standard Watson model (A-reduction). Ground state rotational and quartic centrifugal distortion constants have been obtained from a simultaneous fit of ground state combination differences from four of these bands and previous microwave transitions. Upper state spectroscopic constants have been obtained for all five bands from single band fits using the Watson model. A strong c-Coriolis resonance perturbs the close lying ν5 and ν19 bands. We have analysed this dyad system by a model including first and second order Coriolis resonance using the theoretically predicted Coriolis coupling constant . From this analysis we locate the previously unobserved ν19 band at 1083.969 cm−1. The rotational constants, ground state quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational constants (α-constants) predicted by quantum chemical calculations using a cc-pVTZ basis with B3LYP methodology, are compared with the present experimental data, where there is generally good agreement. A complete set of anharmonic frequencies and α-constants for all fundamental levels of the molecule is given.  相似文献   

19.
The vibration-torsion-rotation spectrum of CH3SiH3 has been measured from 470 to 725 cm−1 at near-Doppler resolution. The full-width at half - maximum of the lines observed near 600 cm−1 was 0.0011 cm−1. The spectra were obtained using a Bruker IFS 125 HR Fourier transform spectrometer with the broadband source radiation being supplied from the synchrotron emission of the storage ring at the Canadian Light Source. Three vibrational bands were investigated: the lowest lying perpendicular fundamental ν12 centred near 524 cm−1, the lowest lying parallel fundamental ν5 near 703 cm−1, and the torsional hot band ν12 + ν6 − ν6 near 534 cm−1. For ν12 and ν5, the resolution and sensitivity are much improved over those in earlier studies, with many of the torsional multiplets now being resolved even in the cases where the upper levels are unperturbed. The primary motivation for the present work was the hot band, here reported for the first time, where the dependence of the silyl rock in ν12 on the torsional motion is much more pronounced. In addition, for the vibrational ground state (gs), two “forbidden” high torsional overtones v6 = 3 ← 0 and 5 ← 0 have been observed that become allowed through resonant mixing of the upper states with ν12 and ν5, respectively. In each case, two (Kσ) series have been measured where the mixing is largest. Here σ = 0, 1, −1 labels the torsional sub-levels. Using the Fourier transform waveguide spectrometer at E. T. H., the three σ-components of the (J = 1 ← 0) transition in ν12 + ν6 were observed, and a series of direct l-doubling transitions in ν12 + ν6 were measured for σ = 0. In a global fit, all the new data have been analysed along with the frequencies for other transitions obtained in earlier investigations. The analysis takes into account the relevant interactions among the torsional stacks of levels in the gs, ν12, and ν5. These include the previously known (gsν12) Coriolis-like and (gsν5) Fermi-like interactions along with a higher order (ν12ν5) Coriolis-like coupling introduced here. This last is responsible for the strong perturbation of the ν5 series with K = 10, 11, and 12, and of the corresponding hot band series. A good fit to 9282 frequencies including 7942 new measurements was obtained both with the Free Rotor model in which the torsion is classified as a rotation, and with the High Barrier model in which the torsion is classified as a vibration. The Hamiltonian is discussed with emphasis on the new terms required for treating ν12 + ν6 − ν6.  相似文献   

20.
The 71 and 91 vibrational states of deuterated species of formic acid molecule DCOOH have been recorded by a FTIR spectrometer in the region 450- at a resolution of and a millimeter wave spectrometer. In the analysis microwave transitions from literature were used in addition to 14 835 assigned IR and 114 millimeter wave lines in the 71 and 91 vibrational states. The analysis resulted in band origins, rotational, centrifugal distortion, and eight interaction parameters of the Coriolis coupled 71 and 91 vibrational states. RMS deviation of the fit was for the IR data and the maximum values of J and Ka quantum numbers in the fit were 64, 28 and 64, 30 for 71 and 91 states, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号