首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The title compound was obtained by reacting UO2 powder in 2 M K2CO3 with hydrogen peroxide. The compound contains individual [U(CO3)2O2(O2)]4− ions, which are linked via an extended network of K atoms and hydrogen bonding. The U atom is coordinated to two trans‐axial O atoms and six O atoms in the equatorial plane, forming distorted hexagonal bipyramids. The carbonate ligands are bound to the U center in a bidentate manner, with U—O bond distances ranging from 2.438 (5) to 2.488 (5) Å. The peroxo group forms a three‐membered ring with the U atom, with U—O bond distances of 2.256 (6) and 2.240 (6) Å. The U=O bond distances of 1.806 (5) and 1.817 (5) Å, and an O—U—O angle of 175.3 (3)° are characteristic of the linear uranyl(VI) unit.  相似文献   

2.
3.
Deep blue-violet single crystals of hitherto unknown chromous orthophosphate have been obtained reducing CrPO4 by elemental Cr at temperatures above 1050°C in evacuated silica ampoules (NH4I or I2 as mineraliser). The complex structure of Cr3(PO4)2 (P212121, Z = 8, a = 8.4849(10) Å, b = 10.3317(10) Å, c = 14.206(2) Å) contains six crystallographically independent Cr2+ per unit cell. Five of them are coordinated by four oxygen atoms which form a distorted (roof shaped) square plane as first coordination sphere at interatomic distances 1.96 Å ? d(Cr? O) ? 2.15 Å. Their coordination is completed by additional oxygen atoms (2 or 3) at distances 2.32 Å ? d(Cr? O) ? 3.21 Å. The sixth Cr2+ shows six-fold octahedral coordination with strong radial distortion (d(Cr? O): 1.97, 2.04, 2.15, 2.28, 2.29, 2.53 Å). The four different [PO4] groups exhibit only minor deviations from ideal tetrahedral geometry (1.51 Å ? d(P? O) ? 1.57 Å, 104.3° ? ∠(O? P? O) ? 114.4°). An unusually low magnetic moment μexp = 4.28(2) μBP = ?54.8(5) K) has been observed for Cr2+.  相似文献   

4.
Pressureless sintering of CaCO3 was carried out, with Li2CO3 (from 0.5 to 8 wt%) as an additive, under different pressures of CO2. Densification occurs between 600 and 700°C. Sintering above the eutectic temperature (T>662°C) leads to the decomposition of calcium carbonate and the materials become expanded. At 620° under 1 kPa of CO2, a relative density of 96% is reached. Li2CO3 enhances the densification process and grain growth of calcium carbonate. CO2 pressure slows down densification and grain growth kinetics. These results are explained by the influence of carbonate and calcium ion vacancies on the sintering mechanisms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
In the structure of cubic tris(ethylenediamine)cobalt(III) hexanitrorhodate(III) hydrate, [Co(en)3][Rh(NO2)6]·3H2O, en=C2H8N2, with a=16.540(5) Å, space group Pa3 (nonstandard, reduced to orthorhombic Pcab), the complex cations, anions, and water molecules are arranged by the law of three-layered (fcc) close packing of “quasispherical” species according to two structural types, NaCl and CaF2. The packing is formed of [Rh(NO2)6]3? anions, which also fill the octahedral voids. The tetrahedral voids are occupied by the central atoms of the [Co(en)3]3+ cations, and the H2O molecules lie between the cations, performing the packing function: the Ow...Nen contacts of 3.04 Å and the Ow..ONO 2 contacts of 3.01 Å characterize weak van der Waals interactions. The values of the interatomic distances Co?N, Rh?N, N?O, N?C, and C?C are in good agreement with the known data.  相似文献   

6.
Analysis of C12H11NO3 revealed a coplanar N‐substituted phenyl group on a pyrrolidine ring with two keto moieties and a hydroxy­ethyl­idene functionality. The hydroxy group forms part of a hydrogen‐bonding network characterized by a short intramolecular H?O distance of 1.81 (3) Å, and a longer intermolecular interaction with an H?O distance of 2.38 (3) Å. Both keto groups form additional intra‐ and intermolecular C—H?O contacts with H?O distances ranging from 2.26 to 2.41 Å.  相似文献   

7.
The structural parameters of the completely relaxed 4–21G ab initio geometries of more than 30 basic organic compounds are compared to experimental results. Some ranges for systematic empirical corrections, which relate 4–21G bond distances to experimental parameters, are associated with total energy increments. In general, for the currently feasible comparisons, the following corrections can be given which relate calculated distances to experimental rg parameters and calculated angles to rs-structures For CC single bond distances, deviations between calculated and observed parameters (rg) are in the ranges of ?0.006(2) to ?0.010(2) Å for normal or unstrained hydrocarbons; ?0.011(3) to ?0.016(3) Å for cyclobutane type compounds; and +0.001(5) to +0.004(4) Å for CH3 conjugated with CO. For CO single bonds the ranges are ?0.006(9) to +0.002(3) Å for CO conjugated with CO; and ?0.019(3) to ?0.027(9) Å for aliphatic and ether compounds. A very large and exceptional discrepancy exists for the highly strained ethylene oxide, rsre = ?0.049(5) Å and in CH3OCH3 and C2H5OCH3 the rsre differences are ?0.029(5), ?0.040(10) and ?0.025(10) Å. Some of these discrepancies may also be due to deficiencies of the microwave substitution method caused by atomic coordinates close to inertial planes. For CN bonds, two types of NCH3 corrections are from +0.005(6) to ?0.006(6) and from ?0.009(2) to ?0.014(6) Å; and the range for NCO is +0.012(3) to +0.028(4) Å. For isolated CC double bonds the range is + 0.025(2) to +0.028(2) Å. For conjugated CC double bonds the correction is less positive (+0.014(1) Å for benzene). For CO double bonds the corrections are ?0.004(3) to +0.003(3) Å. For bond angles of type HCH, CCH, CCC, CCO, CCO, OCO, NCO and CCC the corrections are of the order of magnitude about 1–2° (or better). Angles centered at heteroatoms are less accurate than that, when hydrogen atoms are involved. Differences in HOC and NHC angles were found in a range of ?2.3(5)° to ?6.2(4)°.  相似文献   

8.
The title compound is a salt, [C12H32N6]2+·2[HOC6H4C6H4O]?. The centrosymmetric cation contains two intramolecular N—H?N hydrogen bonds with an N?N distance of 2.8290 (13) Å, and the pendent amino groups are in axial sites; the anion contains an intramolecular O—H?O hydrogen bond with an O?O distance of 2.4656 (11) Å. The ions are linked into continuous chains by means of four types of N—H?O hydrogen bonds with N?O distances ranging from 2.7238 (12) Å to 3.3091 (13) Å, associated with N—H?O angles in the range 148–160°.  相似文献   

9.
Calcium carbonate (CaCO3) is an inorganic compound which is widely used in industry, chemistry, construction, ocean acidification, and biomineralization due to its rich constituent on earth and excellent performance, in which calcium carbonate hydrates are important systems. In Zou et al's work (Science, 2019, 363, 396-400), they found a novel calcium carbonate hemihydrate phase, but the structural stability, optical, and mechanical properties have not been studied. In this work, the stability, electronic, optical, and mechanical properties of novel calcium carbonate hydrates were investigated by using the first-principles calculations using density functional theory. CaCO3·xH2O (x = 1/2, 1 and 6) are determined dynamically stable phases by phonon spectrum, but the Gibbs energy of reaction of CaCO3·1/2H2O is higher than other calcium carbonate hydrates. That is why CaCO3·1/2H2O is hard to synthesize in the experiments. In addition, the optical and mechanical properties of CaCO3·xH2O (x = 1/2, 1 and 6) are expounded in detail. It shows that the CaCO3·1/2H2O has the largest bulk modulus, shear modulus, and Young's modulus with the values 60.51 GPa, 36.56 GPa, and 91.28 GPa. This work will provide guidance for experiments and its applications, such as biomineralization, geology, and industrial processes.  相似文献   

10.
The treatment of [AuCl(SMe2)] with an equimolar amount of NaO5NCS2 (O5NCS2=(aza‐[18]crown‐6)dithiocarbamate) in CH3CN gave [Au2(O5NCS2)2] ? 2 CH3CN ( 2? 2 CH3CN), and its crystal structure displays a dinuclear gold(I)‐azacrown ether ring and an intermolecular gold(I) ??? gold(I) contact of 2.8355(3) Å in crystal lattices. It is noted that two other single crystals of 2 ?tert‐butylbenzene?H2O and 2? 0.5 m‐xylene can be successfully obtained from a single‐crystal‐to‐single‐crystal (SCSC) transformation process by immersing single crystals of 2? 2 CH3CN in the respective solvents, and both also show intermolecular gold(I) ??? gold(I) contacts of 2.9420(5) and 2.890(2)–2.902(2) Å, respectively. Significantly, the emissions of all three 2 ?solvates are well correlated with their respective intermolecular gold(I) ??? gold(I) contacts, where such contacts increase with 2? 2 CH3CN (2.8355(3) Å)< 2? 0.5 m‐xylene (2.890(2)–2.902(2) Å)< 2? tert‐butylbenzene?H2O (2.9420(5) Å), and their emission energies increase with 2? 2 CH3CN (602 nm)< 2? 0.5 m‐xylene (583 nm)< 2? tert‐butylbenzene?H2O (546 nm) as well. In this regard, we further examine the solvochromic luminescence for some other aromatics, and finally their emissions are within 546–602 nm. Obviously, the above results are mostly ascribed to the occurrence of intermolecular gold(I) ??? gold(I) contacts in 2 ?solvates, which are induced by the presence of various solvates in the solid state, as a key role to be responsible for their solvochromic luminescence.  相似文献   

11.
The obtention of the crystalline basic carbonate of iron (III) and ammonium, (NH4)2Fe2(OH)4(CO3)2 · H2O, is described and its formula is established by chemical analysis and infrared spectroscopy. The powder X-ray diagram could be indexed tetragonally leading to a body centred elementary cell with a = 12,04 ± 0,02 Å and c = 6,62 ± 0,01 Å. The infrared spectra show that in the CO groups either one oxygen atom is linked to one iron atom or, rather, two oxygen atoms are linked to two iron atoms. The symmetry of the NH groups is lower than C3v. The OH-groups are linked by hydrogen bonds of 2,75 Å. Two sorts of OH-groups can be distinguished, with a radius of approximately 1,34 Å and 1, 48 Å, respectively. The iron atoms are octahedrally coordinated by oxygen atoms, but either the octahedra are deformed or the iron atoms are in part coordinated tetrahedrally.  相似文献   

12.
The title compound, [MnSn(C7H7O2S)3(CO)5], is asymmetric but crystallizes in the highly symmetric tetragonal space group I. This is achieved without the need for any disorder, either around the Sn atom or in any of the methyl­sulfonyl groups. The environment around the Sn atom has the following geometry: Sn—Mn = 2.6564 (7) Å, mean Sn—C = 2.175 (5) Å, mean C—Sn—C = 103 (2)° and mean C—Sn—Mn = 115 (6)°. The crystal packing is assisted by weak Sn?O interactions between adjacent columns of mol­ecules, with the resulting geometry at Sn approaching highly distorted trigonal–bipyramidal.  相似文献   

13.
Both ions of the title compound, [Au(C4H8S)2](C6H4NO4S2), display crystallographic twofold symmetry. The Au atom exhibits linear coordination, with Au—S = 2.2948 (14) Å and S—Au—S = 178.47 (9)°. The crystal packing consists of layers of anions connected by C—H?O hydrogen bonds; the cations occupy cavities in these layers and the ions are linked by Au?N contacts of 3.009 (7) Å. Further C—H?O interactions connect the layers.  相似文献   

14.
The title compound, [Ni(C7H5O3)2(C10H24N4)], contains octahedral NiII in a centrosymmetric trans configuration with Ni—N distances of 2.0637 (17) and 2.0699 (16) Å and an Ni—O distance of 2.1100 (14) Å. The mol­ecules are linked by a single type of O—H?O hydrogen bond [O?O 2.618 (2) Å and O—H?O 161°] into two‐dimensional sheets; a singletype of N—H?O hydrogen bond [N?O 2.991 (2) Å and N—H?O 139°] links these sheets into a three‐dimensional framework.  相似文献   

15.
Blue crystals of a Cu(NO3)2 · H2O were synthesized by interaction of CuO with boiling 100% HNO3. Stable β-Cu(NO3)2 modification was obtained by the sublimation of copper(II) nitrate in evacuated ampoule over the 150→100°C temperature gradient for 24 hr. According to X-Ray single crystal analysis Cu(NO3)2 · H2O is monoclinic with a = 6.377(1), b = 8.548(1), c = 9.769(1) Å, β = 100.41(1)°, Z = 4, and space group P21/c. β-modification Cu(NO3)2 is orthorhombic with a = 14.161(5), b = 7.516(3), c = 12.886(2) Å, Z = 12, and space group Pbcn. In the both structures Cu atoms are square coordinated by 4 O atoms at the distances ranging from 1.92 to 2.02 Å. In each structure there are also additional Cu? O bonds with the distance of 2.33 or 2.35 Å and some weaker ones with the distances in the range of 2.65–2.72 Å. In the Cu(NO3)2 · H2O structure the [CuO4] squares are connected by the bridging NO3 groups into zigzag chains, which are linked into layers by the longer Cu? O bonds. In the β-Cu(NO3)2 structure the [CuO4] fragments of two types are joined by the bridging NO3 groups in a three-dimensional framework. Some correlations were found between N? O distances and coordination functions of O atoms.  相似文献   

16.
Both title compounds, C9H14O3, display carboxyl‐dimer hydrogen‐bonding patterns. The 4‐acetyl isomer adopts a chiral conformation with negligible disordering of the methyl and carboxyl groups and forms centrosymmetric dimers across the b and c edges of the chosen cell [O?O = 2.667 (3) Å and O—H?O = 175°]. Intermolecular C—H?O close contacts were found for both carbonyl groups. In the 2‐acetyl isomer, there is no intramolecular interaction between the carboxyl and acetyl groups and the hydrogen bonding involves centrosymmetric carboxyl dimerization across the ab and ac faces of the chosen cell [O?O = 2.668 (2) Å and O—H?O = 173°]. The carboxyl group is negligibly disordered, but significant rotational disordering was found for the acetyl methyl group. An intermolecular C—H?O close contact was found involving the ketone group.  相似文献   

17.
The quantum efficiencies of the primary processes in formaldehyde photolysis (?1 and ?2) were determined as a function of wavelength in the range from 2890 to 3380 Å and at 25°C: CH2O + hν → H + HCO (1); CH2O + hν → H2 + CO (2). The estimates of ?2 were derived from ΦH2 values obtained in photolyses of CH2O-isobutene mixtures at high isobutene concentrations where H-atom scavenging was essentially complete. Values of ?1 + ?2, obtained from the ΦH2 values from the pure CH2O photolyses, were very near unity at all but the longest wavelengths employed: ΦH2 = ?1 + ?2 = 1.02 (2930 Å); 1.12 (3130 Å); 1.06 (3150 Å); 1.01 (3250 Å); 1.0 (3335 Å); 0.75 (3380 Å). Our results showed that the onset of photodissociation of CH2O by process (1) was at 3370 ± 10 Å; this corresponds to D(H-CHO) = 84.8 plusmn; 0.3 kcal/mol. The values of ?1 increased regularly with decreasing wavelength from 0 at 3370 Å to ~0.7 at 3175 Å. Little further variation in ?1 occurred from 3175 to 2890 Å. For experiments at λ = 3300 Å, the addition of CO2 (~300 torr) reduced ?2, while the effect on ?1 appeared to be small. The present results coupled with the solar irradiance estimates of Peterson [24] and the extinction data for CH2O from McQuigg and Calvert [7] were used to make new estimates of the apparent first-order rate constants (min?;1 × 103) of process (1) in the lower atmosphere at various solar zenith angles (in parentheses): 2.31 (0°); 2.17 (20°); 1.71 (40°); 0.92 (60°); and 0.17 (78°). The corresponding first-order rate constants (min?1 × 103) for solar light absorption by CH2O in the lower atmosphere are 7.74 (0°); 7.38 (20°); 6.18 (40°); 3.80 (60°); and 0.96 (78°).  相似文献   

18.
Single-phase AB-type carbonate apatites were prepared by sintering appropriate mixtures of CaHPO4 and CaCO3 at 870°C in a CO2 atmosphere with a partial water vapor pressure of 5 mm Hg. Chemical and physical analyses indicate that at a constant CO32?/OH? ratio in the hydroxyl sublattice, carbonate substitutes for phosphate on a 1:1 mole basis. For every three PO43? ions substituted, two vacancies in the Ca2+ sublattice and one in the OH? sublattice are created. The same substitution mechanism seems to apply in pure B-type carbonate apatite.  相似文献   

19.
Cobalt Complexes with 02 Bridges: Structure of μ-Peroxo-bis[pentaamminecobalt(III)] Tetranitrate Dihydrate An X-ray structure determination of the binuclear complex [(NH3)5CoO2Co(NH3)5] (NO3)4 · 2 H2O A has been performed; R = 0.051. A crystallizes in the space group P21/n with Z = 2 and with lattice constants a = 11.657(5), b = 11.977(6), c = 8.082(4) Å, and β = 91.58(4)°. The complex cation has crystallographic 1 -symmetry. The Co? O? O? Co unit is planar with an O? O distance of 1.472(6) Å. Two of the three crystallographically independent NO3 groups show disorder.  相似文献   

20.
Triphenylbismuth bis(3,4-dimethylbenzenesulfonate) Ph3Bi(OSO2C6H3Me2-3,4)2 (I) has been synthesized by the reaction between triphenylbismuth and 3,4-dimethylbenzenesulfonic acid in the presence of tert-butylhydroperoxide (1: 2: 1 mol) in ether. The bismuth atom in complex I has a trigonal bipyramidal coordination to arenesulfonates substituents in axial positions (axial OBiO angle, 173.99(8)°; equatorial CBiC angles, 106.94(11)°, 112.24(11)°, 140.77(11)°). The Bi?C distances are 2.189(3), 2.192(3), and 2.197(3) Å; the Bi?O distances are 2.284(2) and 2.301(2) Å. Some intramolecular contacts are observed between the central atom and the oxygen atoms of sulfonate groups at the maximum equatorial angle (Bi···O 3.122(3), 3.189(4) Å).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号