首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single‐crystalline Zinc oxide (ZnO) nanorods were firstly synthesized on gold‐coated Si substrate via a simple thermal reduction method from the mixture of ZnO and Al powder. The growth process was carried out in a quartz tube at different temperature (550‐700 °C) and at different oxygen partial pressure. Their structure properties were investigated by X‐ray diffraction (XRD), scanning electron microscope (SEM), X‐ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The length of the as‐prepared ZnO nanorods was up to several micrometers and their diameters were about 130 nm. The X‐ray diffraction patterns, transmission electron microscopic images, and selective area electron diffraction patterns indicate that the one‐dimensional ZnO nanorods are a pure Single‐crystal and preferentially oriented in the [0001] direction. The reaction mechanism of ZnO nanorods was proposed on the basis of experimental data. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Flower‐like self‐organized crystalline ZnO architectures were obtained through a facile and controlled hydrothermal process. As‐synthesized products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), electron diffraction and UV‐Vis spectroscopy. XRD and electron diffraction results confirmed the obtained materials are pure wurtzite ZnO. The effects of different ratios of starting materials and solvent on the morphologies of ZnO hydrothermal products were also evaluated by SEM observations. It is suggested that the use of water, rather than ethanol as the solvent, as well as employing a precursor of Zn(Ac)2 and 2NaOH (v/v) in hydrothermal reactions are responsible for the generation of specific flower‐like self‐assembled ZnO structures. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We synthesized In2O3/ZnO/Al‐doped ZnO (AZO) core‐double shell nanowires, in which the inner shell (ZnO) and the outer shell (AZO) have been subsequently deposited on the core In2O3 nanowires. With their one‐dimensional morphology being preserved, the X‐ray diffraction (XRD), lattice‐resolved transmission electron microscopy (TEM) image, selected area electron diffraction, and Raman spectrum coincidentally revealed that the shell was comprised of hexagonal ZnO phase. In addition, TEM‐EDX investigation revealed the presence of Al elements in the shell region. The thermal annealing at 700 °C did not significantly change the nanowire morphology, however, the XRD spectrum indicated that the ZnO phase was crystallized by the annealing. PL spectrum of the 700 °C‐annealed In2O3/ZnO/AZO core‐double shell nanowires was comprised of three Gaussian bands at approximately 2.1 eV, 2.4 eV, and 3.0 eV, respectively. The integrated intensities of 2.1 eV‐, 2.4 eV‐, and 3.0 eV‐bands were decreased by the thermal annealing. This study will pave the road to the preparation and applicaition of double‐shelled nanowires. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
ZnO/α‐Fe2O3 nanocomposites were fabricated through a two‐step hydrothermal method. The morphology and composition of the as‐synthesized products were characterized by X‐ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), energy‐dispersive X‐ray spectroscopy (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The gas sensing properties of the fabricated products were investigated towards ethanol, acetone, propanol, isopropanol, formaldehyde, chloroform and so on. The results demonstrated that the ZnO/α‐Fe2O3 nanocomposites exhibited excellent sensing properties and showed remarkably higher sensing responses and much lower optimum operating temperature compared to individual ZnO and α‐Fe2O3. In addition, the ZnO/α‐Fe2O3 nanocomposites have some selectivity for ethanol, propanol and isopropanol. The possible gas sensing mechanism was also proposed. Our studies demonstrate that our fabricated materials could be widely used in the future.  相似文献   

5.
A simple and general microwave route is developed to synthesize nanostructured ZnO using Zn(acac)2·H2O (acac = acetylacetonate) as a single source precursor. The reaction time has a great influence on the morphology of the ZnO nanostructures and an interesting spindle‐like nanostructure is obtained. The microstructure and morphology of the synthesized materials are investigated by X‐ray diffraction (XRD), scanning electron microscopy (SEM), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). It is found that all of them with hexagonal wurtzite phase are of single crystalline structure in nature. Ultraviolet–visible (UV‐vis) absorption spectra of these ZnO nanostructures are investigated and a possible formation mechanism for the spindle‐like ZnO nanostructures is also proposed.  相似文献   

6.
Nanoplates, flower‐like nanostructure of ZnO were successfully synthesized by employing ZnSO4·7H2O, NaOH as the starting materials at 120°C under hydrothermal condition. Keeping the same parameters, ZnO urchin shape was obtained by addition of vitamin C at 190°C. Characterizations were carried out by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) at room temperature. Selected area electron diffraction (SAED) pattern confirms that the product is single crystalline nature. The possible formation mechanisms for synthesized ZnO nanosturcture with various morphologies have also been proposed. PL spectrum from the ZnO flower‐like structures reveals weak UV emission and strong green emission. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
A new approach, combining in‐situ sol‐gel process with electrospinning, was used to prepare magnetic barium acetate/manganese acetate/poly (vinyl alcohol) (PVA) composite nanofibers. The composite gel was synthesized by sol‐gel method in the presence of 10 wt.% PVA aqueous solution. PVA was used as stabilizer and polymeric matrix. The resultant barium acetate/manganese acetate/PVA composite nanofibers were calcined at 1023 K for 5 h. This formed BaO/MnO nanocomposite crystalline fibers with average diameter less than 100 nm and were characterized with Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Energy Dispersive X‐ray Analysis (EDAX), powder X‐ray diffractometer (XRD), UV‐Vis‐Spectroscopy (UV) and Vibrating Sample Magnetometer (VSM) respectively. These composite fibers exhibited a uniform cylindrical morphology, with the BaO/MnO nanoparticles implanted in the fibers. M‐H curves were obtained at 300 K and 20 K. From the M‐H curves, room temperature ferromagnetism was observed at 300 K. At low temperatures, the ferromagnetic behavior was masked by the paramagnetic behavior. The saturation magnetization at 300 K was found to be 0.004 emu /g and the saturation magnetization at 20 K was found to be 0.658 emu /g. The magnetization at 20 K was found to be very large and it was several times larger than at 300 K. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
K0.5Na0.5NbO3 powders have been directly synthesized by an alternative solid–state method. Stoichimometric mixture of ammonium niobium oxalate and C4H4O6KNa·4H2O were calcined in temperature range from 500 to 800 °C for 3 h. The precursor and calcination products were characterized with respect to stoichiometry, purity, crystalline structure, particle size and powder morphology using X–ray diffraction (XRD), X‐ray fluorescence (XRF) spectrometer, scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectra, thermogravimetric (TG) analysis, differential scanning calorimetry (DSC) and UV–Vis diffuse reflectance (UV–Vis) spectroscopy. XRD and XRF results reveal that stoichiometric K0.5Na0.5NbO3 powders could be synthesized by the method. The particle size is about 68 nm for the precursor calcined at 500 °C according to XRD data, which is in good agreement with SEM data. The average band gap energy is estimated to be 3.18 eV by UV–vis diffuse reflectance spectra. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Large‐scale zinc oxide (ZnO) nanotetrapods have been grown on p‐type Si (111) substrate by oxidizing zinc pieces in air by thermal evaporation technique without the presence of any catalyst. The size and morphology of the nanostructures was found to depend on experimental parameters. The grown nanostructures were characterized by X‐ray Diffraction (XRD), Photoluminescence (PL), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), High Resolution TEM (HRTEM) and analysis of elemental composition was done by Energy Dispersive X‐ray analysis (EDX). The EDX spectrum shows that the grown product contains Zn and O only. The X‐ray diffraction pattern indicates that the microstructure of the obtained products is typical hexagonal wurtzite ZnO. The optical properties were studied using room temperature PL spectroscopy which indicates that the products are of high optical quality and the near band edge UV transition peak intensity increases with decrease in tetrapod size. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The bulk samples of Mn‐doped ZnO were synthesized with the nominal compositions Zn1‐xMnxO (x = 0.02, 0.05, 0.10, 0.15) by the solid‐state reaction and sol‐gel methods. In both the methods the samples were finally sintered at ∼700 °C in air. The X‐ray diffraction (XRD) studies of the samples synthesized by the solid‐state reaction method exhibit the presence of wurtzite (hexagonal) crystal structure similar to the parent compound (ZnO) in all the samples, suggesting that doped Mn ions sit at the regular Zn sites. However, same studies spread over the samples with Mn content ≥5% and synthesized by the sol‐gel method reveal the occurrence of some secondary phase in addition to the majority wurtzite phase. The magnetic measurements by vibrating sample magnetometer (VSM) clearly indicate ferromagnetic interaction at room temperature in all the samples. The Curie temperatures (Tc) and magnetization vary with concentration of Mn ions in the samples. However, the samples synthesized by sol‐gel method were found to have lower Tc values and also lower magnetization as compared to the corresponding samples synthesized by solid‐state reaction method. It could possibly be due to the presence of antiferromagnetic islands and smaller crystallite sizes in the samples prepared by sol‐gel method. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Mn substituted ZnO nanocrystals synthesized by a co‐precipitation method. X‐ray diffraction (XRD) studies confirms the presence of wurtzite (hexagonal) crystal structure similar to un doped ZnO, suggesting that doped Mn ions go at the regular Zn sites. The lattice parameters a and c are increasing with increasing Mn content. The unit cell volume increases with increasing Mn concentration, indicating the homogeneous substitution of Mn2+ for the Zn2+. The lattice distortion parameter (εv) is evaluated from XRD data and found that it enhances as Mn content increases. Transmission electron microscopy photographs show that the size of the ZnO crystals is in the range of 20‐50 nm. The SAED pattern confirms the hexagonal and crystalline nature of the samples which are in agreement with X‐ray analysis. The chemical groups of the samples have been identified by FTIR studies (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Zinc oxide (ZnO) pencil‐head‐like (PHL) microprisms were synthesized by a hydrothermal route using a zinc (Zn) plate as a source and substrate. The structural analysis confirmed the formation of ZnO with hexagonal wurtzite phase on the hexagonal Zn substrate and the growth of the ZnO microparticles along the [101] direction. The room temperature photoluminescence (PL) of the ZnO microprisms showed a sharp UV emission band located at around 380 nm, which is expected to originate from the radiative recombination of free excitons. The sharp UV emission band, with a full width at half‐maximum of about 15 nm and an extremely weak visible emission, confirms the high crystal quality of the synthesized ZnO microprisms. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Radial‐like ZnO structures were prepared using zinc sulfate (ZnSO4·7H2O) and zinc acetate [Zn(CH3COO)2·2H2O] as zinc sources by a facile template‐free hydrothermal method in this paper. Structural and optical properties of radial‐like ZnO structures are characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV‐vis spectrophotometer and photoluminescence measurement (PL). It has been found that the distinct surface morphologies of radial‐like ZnO structures grown by different zinc sources. Slim radial‐like ZnO with a hexagonal wurtzite structure is grown by using ZnSO4·7H2O as zinc sources, whereas coarse radial‐like ZnO with zincite structure is achieved by zinc acetate. The UV‐vis absorption spectra of them both display an obvious and significant absorption in the ultraviolet region. The room temperature PL spectra of ZnO structures grown by two different zinc sources possess a common feature that consists of a strong ultraviolet (UV) peak and visible emission band.  相似文献   

14.
Nd‐doped ZnO nanoparticles with different concentration were synthesized by sol‐gel method. The structures, magnetic and optical properties of as‐synthesized nanorods were investigated. X‐ray diffraction (XRD) and x‐ray photoelectron spectroscopy (XPS) results demonstrated that Nd ions were incorporated into ZnO lattice; but Zn1‐xNdxO nanoparticles with Nd concentration of x = 0.05 showed Nd2O3 phase, so the saturation concentration of Nd in Zn1‐xNdxO is less than 5 at%. Vibrating sample magnetometer (VSM) measurements indicated that Nd doped ZnO possessed dilute ferromagnetis behaviour at room temperature. Photoluminescence spectroscopy (PL) showed that Nd ions doping induced a red slight shift and decrease in UV emission with increase of Nd concentration.  相似文献   

15.
MgxZn1‐xO (x=0.01‐0.3) nanoparticles were synthesized by the sol‐gel technique using solutions of Mg and Zn based organometalic compounds. The electrical properties of Mg doped zinc oxide (ZnO) were studied within wide temperature range from 300 to 500 K under the N2 gas flow (flow rate: 20 sccm) and in the frequency range from 40 Hz to 1 MHz for ac electrical measurements. The dc conductivities and the activation energies were found to be in the range of 10‐9‐10‐6 S/cm at the room temperature and 0.26‐0.86 eV respectively depending on doping rate of these samples. The ac conductivity was well represented by the power law Aωs. The conduction mechanism for all doped ZnO could be related to correlated barrier hopping (CBH) model. The complex impedance plots (Nyquist plot) showed the data points lying on a single semicircle, implying the response originated from a single capacitive element corresponding to the nanoparticle grains. The crystal structures of the MgxZn1‐xO nanoparticles were characterized using X‐ray diffraction. The calculated average particle sizes values of Zn1‐xMgxO samples are found between 29.72 and 22.43 nm using the Sherrer equation. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Novel hierarchical nano materials possess tremendous latent force in many applications. In this paper, hierarchical flower‐like, spherical and bowl‐like zinc oxide was successfully synthesized by altering solvent ratio (absolute ethanol and diethylene glycol) via a simple and template‐free solvothermal synthetic route. The solvent ratio also plays a vital role in deciding the structure, crystalline, band gap energy and specific surface area of the as‐synthesized samples. The preparation mechanism of ZnO in mixed alcohols was discussed. The obtained samples were characterized by energy dispersive spectroscopy(EDS), X‐ray diffraction (XRD), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), N2 adsorption‐desorption, UV–vis diffuse reflectance spectroscopy (DRS). Photocatalytic activity of the as‐prepared ZnO nanocrystals was evaluated by the degradation of MB under UV irradiation. Among, the most effective photocatalyst was synthesized when the diethylene glycol was 10 ml.  相似文献   

17.
ZnO nanotube arrays were synthesized on zinc foil by a simple solvothermal approach. In this approach, zinc foil was used not only as a substrate but also as a zinc‐ion source for the direct growth of ZnO nanotube arrays. X‐ray diffraction (XRD) analysis and Scanning electron microscope (SEM) images, indicated that the structure of the ZnO nanotube arrays on the zinc foil substrate was single‐crystalline with a wurtzite structure. The optical properties of the ZnO nanorod arrays were characterized by photoluminescence spectroscopies and Raman. Photoluminescence exhibited strong UV emission and a broad deep‐level (visible) emission emission at with 325 nm excitation. A possible mechanism is also proposed to account for the growth of the ZnO nanotube arrays. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
ZnO nanostructures with various morphologies including rod‐like, sheet‐like, needle‐like and flower‐like structures were successfully synthesized via a fast and facile microwave‐assisted hydrothermal process. Reaction temperature, reaction time and the addition of NaOH were adjusted to obtain ZnO with different morphologies. Scanning electron microscopy(SEM), transmission electron microscope(TEM), X‐ray diffraction (XRD) and ultraviolet spectrophotometer (UV) were used to observe the morphology, crystal structure, ultraviolet absorption and photocatalytic activity of the obtained ZnO. The results indicated that growth rate of ZnO nanostructure along [001] direction was more sensitive to temperature compared with those along [101] and [100] directions. The competition between anionic surfactant and OH played an important role in the formation of ZnO with various morphologies. Flower‐like ZnO had better ultraviolet absorption property and excellent photocatalytic activity than ZnO in the other morphologies. On the basis of the above results, a possible growth mechanism for the formation of ZnO nanostructures with different morphologies was described.  相似文献   

19.
A zinc oxide (ZnO) nanoarray (rod‐like nanostructure) was successfully synthesized through a low‐temperature aqueous solution and microwave‐assisted synthesis using zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMTA) as raw materials, and using FTO glass as substrate. The effects of parameters in the preparation process, such as solution concentration, reaction temperature and microwave power, on the morphology and microstructure of ZnO nanoarray were studied. Phase structure and morphology of the products were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results indicated that hexagonal wurtzite structure ZnO nanoarray with good crystallization could be prepared through a low‐temperature solution method. When the concentration of the mixed solution was 0.05 M, the reaction temperature was 95 °C, and the reaction time was 4 h, high‐density ZnO regular nanorods of 200 nm diameter were obtained. A possible mechanism with different synthesis methods and the influence of microwave processing are also proposed in this paper.  相似文献   

20.
Well‐faceted hexagonal ZnO nanorods have been synthesized by a simple hydrothermal method at relative low temperature (90°C) without any catalysts or templates. Zinc oxide (ZnO) nanorods were grown in an aqueous solution that contained Zinc chloride (ZnCl2, Aldrich, purity 98%) and ammonia (25%). Most of the ZnO nanorods show the perfect hexagonal cross section and well‐faceted top and side surfaces. The diameter of ZnO nanorods decreased with the reaction time prolonging. The samples have been characterized by X‐ray powder diffraction (XRD) and scanning electron microscopy (SEM) measurement. XRD pattern confirmed that the as‐prepared ZnO was the single‐phase wurtzite structure formation. SEM results showed that the samples were rod textures. The surface‐related optical properties have been investigated by photoluminescence (PL) spectrum and Raman spectrum. Photoluminescence measurements showed each spectrum consists of a weak band ultraviolet (UV) band and a relatively broad visible light emission peak for the samples grown at different time. It has been found that the green emission in Raman measurement may be related to surface states. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号