首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
This paper presents the conic scalarization method for scalarization of nonlinear multi-objective optimization problems. We introduce a special class of monotonically increasing sublinear scalarizing functions and show that the zero sublevel set of every function from this class is a convex closed and pointed cone which contains the negative ordering cone. We introduce the notion of a separable cone and show that two closed cones (one of them is separable) having only the vertex in common can be separated by a zero sublevel set of some function from this class. It is shown that the scalar optimization problem constructed by using these functions, enables to characterize the complete set of efficient and properly efficient solutions of multi-objective problems without convexity and boundedness conditions. By choosing a suitable scalarizing parameter set consisting of a weighting vector, an augmentation parameter, and a reference point, decision maker may guarantee a most preferred efficient or properly efficient solution.  相似文献   

2.
On noninferior performance index vectors   总被引:2,自引:0,他引:2  
The noninferior vector index problem of optimal control theory is investigated in an effort to establish some basic properties of the noninferior index surface in the generalN-dimensional index problem. The vector performance index problem is first converted to a family of scalar index problems by forming an auxiliary scalar index as a function of the vector index and a vector of weighting parameters. The functional relationship between noninferior vectors and the weighting vectors of the auxiliary index problem is investigated for the particular case in which the auxiliary index is a weighted sum of the vector index elements. Special attention is devoted to the noninferior index problem for whichN = 2.  相似文献   

3.
本文利用优化模型研究求解对称正定线性方程组Ax=6的多分裂并行算法的权矩阵.在我们的多分裂并行算法中,m个分裂仅要求其中之一为P-正则分裂而其余的则可以任意构造,这不仅大大降低了构造多分裂的难度,而且也放宽了对权矩阵的限制(不像标准的多分裂迭代方法中要求权矩阵为预先给定的非负数量矩阵).并且证明了新的多分裂迭代法是收敛的.最后,通过数值例子展示了新算法的有效性.  相似文献   

4.
In this work continuous-time programming problems of vector optimization are considered. Firstly, a nonconvex generalized Gordan’s transposition theorem is obtained. Then, the relationship with the associated weighting scalar problem is studied and saddle point optimality results are established. A scalar dual problem is introduced and duality theorems are given. No differentiability assumption is imposed.  相似文献   

5.
We investigate the convergence of the weighted GMRES method for solving linear systems. Two different weighting variants are compared with unweighted GMRES for three model problems, giving a phenomenological explanation of cases where weighting improves convergence, and a case where weighting has no effect on the convergence. We also present a new alternative implementation of the weighted Arnoldi algorithm which under known circumstances will be favourable in terms of computational complexity. These implementations of weighted GMRES are compared for a large number of examples. We find that weighted GMRES may outperform unweighted GMRES for some problems, but more often this method is not competitive with other Krylov subspace methods like GMRES with deflated restarting or BICGSTAB, in particular when a preconditioner is used.  相似文献   

6.
In this paper, we develop a method of study of Levitin?CPolyak well-posedness notions for vector valued optimization problems using a class of scalar optimization problems. We first introduce a non-linear scalarization function and consider its corresponding properties. We also introduce the Furi?CVignoli type measure and Dontchev?CZolezzi type measure to scalar optimization problems and vectorial optimization problems, respectively. Finally, we construct the equivalence relations between the Levitin?CPolyak well-posedness of scalar optimization problems and the vectorial optimization problems.  相似文献   

7.
We consider problems of vector optimization with preferences that are not necessarily a pre-order relation. We introduce the class of functions which can serve for a scalarization of these problems and consider a scalar duality based on recently developed methods for non-linear penalization scalar problems with a single constraint.  相似文献   

8.
In this work we propose and analyze a mixed finite volume method for the p-Laplacian problem which is based on the lowest order Raviart–Thomas element for the vector variable and the P1 nonconforming element for the scalar variable. It is shown that this method can be reduced to a P1 nonconforming finite element method for the scalar variable only. One can then recover the vector approximation from the computed scalar approximation in a virtually cost-free manner. Optimal a priori error estimates are proved for both approximations by the quasi-norm techniques. We also derive an implicit error estimator of Bank–Weiser type which is based on the local Neumann problems.This work was supported by the Post-doctoral Fellowship Program of Korea Science & Engineering Foundation (KOSEF).  相似文献   

9.
We discuss the nonstationary multisplittings and two-stage multisplittings to solve the linear systems of algebraic equations Ax = b when the coefficient matrix is a non-Hermitian positive definite matrix, and establish the convergence theories with general weighting matrices. This not only eliminates the restrictive condition that it is usually assumed for scalar weighting matrices, but also generalizes it to a general positive definite matrix.  相似文献   

10.
We propose a weighting subgradient algorithm for solving multiobjective minimization problems on a nonempty closed convex subset of an Euclidean space. This method combines weighting technique and the classical projected subgradient method, using a divergent series steplength rule. Under the assumption of convexity, we show that the sequence generated by this method converges to a Pareto optimal point of the problem. Some numerical results are presented.  相似文献   

11.
This paper focuses on the study of finding efficient solutions in fractional multicriteria optimization problems with sum of squares convex polynomial data. We first relax the fractional multicriteria optimization problems to fractional scalar ones. Then, using the parametric approach, we transform the fractional scalar problems into non-fractional problems. Consequently, we prove that, under a suitable regularity condition, the optimal solution of each non-fractional scalar problem can be found by solving its associated single semidefinite programming problem. Finally, we show that finding efficient solutions in the fractional multicriteria optimization problems is tractable by employing the epsilon constraint method. In particular, if the denominators of each component of the objective functions are same, then we observe that efficient solutions in such a problem can be effectively found by using the hybrid method. Some numerical examples are given to illustrate our results.  相似文献   

12.
In this work, we propose a new parallel multisplitting iterative method for non-symmetric positive definite linear systems. Based on optimization theory, the new method has two great improvements; one is that only one splitting needs to be convergent, and the other is that the weighting matrices are not scalar and nonnegative matrices. The convergence of the new parallel multisplitting iterative method is discussed. Finally, the numerical results show that the new method is effective.  相似文献   

13.
This paper investigated the problem of improved delay-dependent stability criteria for continuous system with two additive time-varying delay components. Free weighting matrices and convex combination method are not involved, which achieves much less numbers of linear matrix inequalities (LMIs) and LMIs scalar decision variables. By taking advantage of integral inequality and new Lyapunov–Krasovskii functional, new less conservative delay-dependent stability criterion is derived. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

14.
Emma Skopin 《PAMM》2012,12(1):585-586
The scalar Oseen equation represents a linearized form of the Navier Stokes equations. We present an explicit potential theory for this equation and solve the exterior Dirichlet and interior Neumann boundary value problems via a boundary integral equations method in spaces of continuous functions on a C2-boundary, extending the classical approach for the isotropic selfadjoint Laplace operator to the anisotropic non-selfadjoint scalar Oseen operator. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In this paper, we study a class of constrained scalar set-valued optimization problems, which includes scalar optimization problems with cone constraints as special cases. We introduce (local) calmness of order??? for this class of constrained scalar set-valued optimization problems. We show that the (local) calmness of order??? is equivalent to the existence of a (local) exact set-valued penalty map.  相似文献   

16.
Personnel rostering problems are highly constrained resource allocation problems. Human rostering experts have many years of experience in making rostering decisions which reflect their individual goals and objectives. We present a novel method for capturing nurse rostering decisions and adapting them to solve new problems using the Case-Based Reasoning (CBR) paradigm. This method stores examples of previously encountered constraint violations and the operations that were used to repair them. The violations are represented as vectors of feature values. We investigate the problem of selecting and weighting features so as to improve the performance of the case-based reasoning approach. A genetic algorithm is developed for off-line feature selection and weighting using the complex data types needed to represent real-world nurse rostering problems. This approach significantly improves the accuracy of the CBR method and reduces the number of features that need to be stored for each problem. The relative importance of different features is also determined, providing an insight into the nature of expert decision making in personnel rostering.  相似文献   

17.
We compare the relative performances of two iterative schemes based on projection techniques for the solution of large sparse nonsymmetric systems of linear equations, encountered in the numerical solution of partial differential equations. The Block–Symmetric Successive Over-Relaxation (Block-SSOR) method and the Symmetric–Kaczmarz method are derived from the simplest of projection methods, that is, the Kaczmarz method. These methods are then accelerated using the conjugate gradient method, in order to improve their convergence. We study their behavior on various test problems and comment on the conditions under which one method would be better than the other. We show that while the conjugate-gradient-accelerated Block-SSOR method is more amenable to implementation on vector and parallel computers, the conjugate-gradient accelerated Symmetric–Kaczmarz method provides a viable alternative for use on a scalar machine.  相似文献   

18.
One useful approach for fitting linear models with scalar outcomes and functional predictors involves transforming the functional data to wavelet domain and converting the data-fitting problem to a variable selection problem. Applying the LASSO procedure in this situation has been shown to be efficient and powerful. In this article, we explore two potential directions for improvements to this method: techniques for prescreening and methods for weighting the LASSO-type penalty. We consider several strategies for each of these directions which have never been investigated, either numerically or theoretically, in a functional linear regression context. We compare the finite-sample performance of the proposed methods through both simulations and real-data applications with both 1D signals and 2D image predictors. We also discuss asymptotic aspects. We show that applying these procedures can lead to improved estimation and prediction as well as better stability. Supplementary materials for this article are available online.  相似文献   

19.
In this paper we consider the solution of a bi-level linear fractional programming problem (BLLFPP) by weighting method. A non-dominated solution set is obtained by this method. In this article decision makers (DMs) provide their preference bounds to the decision variables that is the upper and lower bounds to the decision variables they control. We convert the hierarchical system into scalar optimization problem (SOP) by finding proper weights using the analytic hierarchy process (AHP) so that objective functions of both levels can be combined into one objective function. Here the relative weights represent the relative importance of the objective functions.  相似文献   

20.
In the framework of solving elastodynamic problems using a least-squares mixed finite element method (LSFEM) the implementation of a stress-velocity formulation for small strains is introduced and discussed in the present contribution. The element formulation is based on a first-order div – grad system, with the balance equation of momentum and the constitutive law as the governing equations. Application of the L2-norm to the two residuals leads to a functional depending on stresses and velocities. Different time discretization schemes are considered, a scalar weighting is introduced and chosen in dependency of the different time discretization methods. In a numerical example the influence of the time integration method, the chosen time step width and the related weighing factor are investigated for a two-dimensional problem. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号