首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
High-frequency auditory filter shapes of an Atlantic bottlenose dolphin (Tursiops truncatus) were measured using a notched noise masking source centered on pure tone signals at frequencies of 40, 60, 80 and 100?kHz. A dolphin was trained to swim into a hoop station facing the noise/signal transducer located at a distance of 2?m. The dolphin's masked threshold was determined using an up-down staircase method as the width of the notched noise was randomly varied from 0, 0.2, 04, 0.6, and 0.8 times the test tone frequency. The masked threshold decreased as the width of the notched increased and less noise fell within the auditory filter associated with the test tone. The auditory filter shapes were approximated by fitting a roex (p,r(r)) function to the masked threshold results. A constant-Q value of 8.4 modeled the results within the frequency range of 40 to 100 kHz relatively well. However, between 60 and 100?kHz, the 3?dB bandwidth was relatively similar between 9.5 and 10?kHz, indicating a constant-bandwidth system in this frequency range The mean equivalent rectangular bandwidth calculated from the filter shape was approximately 16.0%, 17.0%, 13.6% and 11.3% of the tone frequencies of 40, 60, 80, and 100?kHz.  相似文献   

2.
A simultaneous masking procedure was used to derive four measures of frequency selectivity in the chinchilla. The first experiment measured critical masking ratios (CRs) at various signal frequencies. Estimates of the chinchillas' critical bandwidths derived from the CRs were much broader than comparable human estimates, indicating that the chinchilla may have inferior frequency selectivity. The second experiment measured critical bandwidths at 1, 2, and 4 kHz in a band-narrowing experiment. This technique yielded narrower estimates of critical bandwidth; however, chinchillas continued to exhibit poor frequency selectivity compared to man. The third experiment measured auditory-filter shape at 0.5, 1, and 2 kHz via rippled noise masking. Results of the rippled noise masking experiment indicate that auditory filters of humans and chinchillas are similar in terms of shape and bandwidth with chinchillas showing only slightly poorer frequency selectivity. The final experiment measured auditory filter shape at 0.5, 1, 2, and 4 kHz using notched noise masking. This experiment yielded auditory filter shapes and bandwidths similar to those derived from man. The discrepancy between the indirect estimates of frequency selectivity derived from CR and band-narrowing techniques and the direct estimates derived from rippled noise and notched noise masking are explained by taking into account the processing efficiency of the subjects.  相似文献   

3.
Auditory filter bandwidths were measured using nonsimultaneous masking, as a function of signal level between 10 and 35 dB SL for signal frequencies of 1, 2, 4, and 6 kHz. The brief sinusoidal signal was presented in a temporal gap within a spectrally notched noise. Two groups of normal-hearing subjects were tested, one using a fixed masker level and adaptively varying signal level, the other using a fixed signal level and adaptively varying masker level. In both cases, auditory filters were derived by assuming a constant filter shape for a given signal level. The filter parameters derived from the two paradigms were not significantly different. At 1 kHz, the equivalent rectangular bandwidth (ERB) decreased as the signal level increased from 10 to 20 dB SL, after which it remained roughly constant. In contrast, at 6 kHz, the ERB increased consistently with signal levels from 10 to 35 dB SL. The results at 2 and 4 kHz were intermediate, showing no consistent change in ERB with signal level. Overall, the results suggest changes in the level dependence of the auditory filters at frequencies above 1 kHz that are not currently incorporated in models of human auditory filter tuning.  相似文献   

4.
Temporal modulation transfer functions (TMTFs) were measured using narrow-band AM and QFM noises with upper spectral edges from 0.6 to 4.8 kHz, and spectrum levels of 10 and 40 dB SPL. The cutoff frequency of the TMTF increases as the upper spectral edge is increased up to 4.8 kHz at low levels, and is constant at higher levels. Sensitivity increases with bandwidth if frequency region is constant. In a second experiment, these results were compared to predictions of a model incorporating peripheral and central limitations to modulation detection. To obtain an estimate of peripheral filtering, frequency selectivity was measured using the notched-noise method, with probe frequencies and levels chosen to parallel those in the first experiment. The TMTF data were then predicted using the model. Predicted cutoff frequencies as a function of the upper spectral edge of the test stimulus were lower than but parallel to those of the subjects at the lower stimulus level. The model predicted only a slight increase in cutoff frequency with level, and thus predicted an increase in cutoff frequency with frequency region at the higher level as well, in contrast to the measured data. These results suggest that there are peripheral and central limitations to temporal resolution, but the psychoacoustically derived auditory filter may be only an indirect measure of peripheral filtering, and/or a more complex model may be needed.  相似文献   

5.
Three experiments tested the hypothesis that fundamental frequency (fo) discrimination depends on the resolvability of harmonics within a tone complex. Fundamental frequency difference limens (fo DLs) were measured for random-phase harmonic complexes with eight fo's between 75 and 400 Hz, bandpass filtered between 1.5 and 3.5 kHz, and presented at 12.5-dB/component average sensation level in threshold equalizing noise with levels of 10, 40, and 65 dB SPL per equivalent rectangular auditory filter bandwidth. With increasing level, the transition from large (poor) to small (good) fo DLs shifted to a higher fo. This shift corresponded to a decrease in harmonic resolvability, as estimated in the same listeners with excitation patterns derived from measures of auditory filter shape and with a more direct measure that involved hearing out individual harmonics. The results are consistent with the idea that resolved harmonics are necessary for good fo discrimination. Additionally, fo DLs for high fo's increased with stimulus level in the same way as pure-tone frequency DLs, suggesting that for this frequency range, the frequencies of harmonics are more poorly encoded at higher levels, even when harmonics are well resolved.  相似文献   

6.
The gammatone filter was imported from auditory physiology to provide a time-domain version of the roex auditory filter and enable the development of a realistic auditory filterbank for models of auditory perception [Patterson et al., J. Acoust. Soc. Am. 98, 1890-1894 (1995)]. The gammachirp auditory filter was developed to extend the domain of the gammatone auditory filter and simulate the changes in filter shape that occur with changes in stimulus level. Initially, the gammachirp filter was limited to center frequencies in the 2.0-kHz region where there were sufficient "notched-noise" masking data to define its parameters accurately. Recently, however, the range of the masking data has been extended in two massive studies. This paper reports how a compressive version of the gammachirp auditory filter was fitted to these new data sets to define the filter parameters over the extended frequency range. The results show that the shape of the filter can be specified for the entire domain of the data using just six constants (center frequencies from 0.25 to 6.0 kHz and levels from 30 to 80 dB SPL). The compressive, gammachirp auditory filter also has the advantage of being consistent with physiological studies of cochlear filtering insofar as the compression of the filter is mainly limited to the passband and the form of the chirp in the impulse response is largely independent of level.  相似文献   

7.
The cochlear plays a vital role in the sense and sensitivity of hearing; however, there is currently a lack of knowledge regarding the relationships between mechanical transduction of sound at different intensities and frequencies in the cochlear and the neurochemical processes that lead to neuronal responses in the central auditory system. In the current study, we introduced manganese-enhanced MRI (MEMRI), a convenient in vivo imaging method, for investigation of how sound, at different intensities and frequencies, is propagated from the cochlear to the central auditory system. Using MEMRI with intratympanic administration, we demonstrated differential manganese signal enhancements according to sound intensity and frequencies in the ascending auditory pathway of the rat after administration ofintratympanicMnCl2.Compared to signal enhancement without explicit sound stimuli, auditory structures in the ascending auditory pathway showed stronger signal enhancement in rats who received sound stimuli of 10 and 40 kHz. In addition, signal enhancement with a stimulation frequency of 40 kHz was stronger than that with 10 kHz. Therefore, the results of this study seem to suggest that, in order to achieve an effective response to high sound intensity or frequency, more firing of auditory neurons, or firing of many auditory neurons together for the pooled neural activity is needed.  相似文献   

8.
Extracellular recordings from the cervical connectives in both long- and short-winged E. carolinus reveal auditory units that are sensitive to frequencies > 15 kHz with best sensitivity at 35 kHz (79 dB SPL threshold). Stimuli in this frequency range also elicit a startle response in long-winged individuals flying on a tether. For single-pulse stimuli, startle and neck connective thresholds decrease with increasing ultrasound duration, consistent with the operation of an exponential integrator with a approximately 32.5-ms time constant. There is evidence for adaptation to long duration pulses (> 20 ms) in the neck connectives, however, as it is more difficult to elicit responses to the later stimuli of a series. For paired-pulse stimuli consisting of 1-ms pulses of 40 kHz, temporal integration was demonstrated for pulse separations < 5 ms. For longer pulse separations, startle thresholds were elevated by 3 dB and appear to be optimally combined. Startle thresholds to 5 ms frequency modulated (FM) sweeps (60-30 kHz) and pure tone pulses (40 kHz) did not differ. The characteristics and sensitivity of this ultrasound-induced startle response did not differ between males and females. As in some other tympanate insects, ultrasound sensitivity in E. carolinus presumably functions in the context of predation from echolocating bats.  相似文献   

9.
Because many cetacean species produce characteristic calls that propagate well under water, acoustic techniques can be used to detect and identify them. The ability to identify cetaceans to species using acoustic methods varies and may be affected by recording and analysis bandwidth. To examine the effect of bandwidth on species identification, whistles were recorded from four delphinid species (Delphinus delphis, Stenella attenuata, S. coeruleoalba, and S. longirostris) in the eastern tropical Pacific ocean. Four spectrograms, each with a different upper frequency limit (20, 24, 30, and 40 kHz), were created for each whistle (n = 484). Eight variables (beginning, ending, minimum, and maximum frequency; duration; number of inflection points; number of steps; and presence/absence of harmonics) were measured from the fundamental frequency of each whistle. The whistle repertoires of all four species contained fundamental frequencies extending above 20 kHz. Overall correct classification using discriminant function analysis ranged from 30% for the 20-kHz upper frequency limit data to 37% for the 40-kHz upper frequency limit data. For the four species included in this study, an upper bandwidth limit of at least 24 kHz is required for an accurate representation of fundamental whistle contours.  相似文献   

10.
The shape of the auditory filter was estimated at three center frequencies, 0.5, 1.0, and 2.0 kHz, for five subjects with unilateral cochlear impairments. Additional measurements were made at 1.0 kHz using one subject with a unilateral impairment and six subjects with bilateral impairments. Subjects were chosen who had thresholds in the impaired ears which were relatively flat as a function of frequency and ranged from 15 to 70 dB HL. The filter shapes were estimated by measuring thresholds for sinusoidal signals (frequency f) in the presence of two bands of noise, 0.4 f wide, one above and one below f. The spectrum level of the noise was 50 dB (re: 20 mu Pa) and the noise bands were placed both symmetrically and asymmetrically about the signal frequency. The deviation of the nearer edge of each noise band from f varied from 0.0 to 0.8 f. For the normal ears, the filters were markedly asymmetric for center frequencies of 1.0 and 2.0 kHz, the high-frequency branch being steeper. At 0.5 kHz, the filters were more symmetric. For the impaired ears, the filter shapes varied considerably from one subject to another. For most subjects, the lower branch of the filter was much less steep than normal. The upper branch was often less steep than normal, but a few subjects showed a near normal upper branch. For the subjects with unilateral impairments, the equivalent rectangular bandwidth of the filter was always greater for the impaired ear than for the normal ear at each center frequency. For three subjects at 0.5 kHz and one subject at 1.0 kHz, the filter had too little selectivity for its shape to be determined.  相似文献   

11.
The evoked acoustic potentials of the brainstem (EAPB) were detected from the brain, the skull, and the surface of the head of the harbor porpoise (Phocaena phocaena). Experiments were performed at the Karadag biological station (Crimea). Clicks, noise, and tone bursts of different frequencies within 80–190 kHz were used as stimuli. The time and frequency selectivities of the auditory system were estimated by the simultaneous and direct forward masking methods. The minima of EAPB thresholds were usually observed in a frequency range of 120–140 kHz, which corresponded to the main spectral maximum of the species-specific echolocation signal. In addition to the regular EAPB, a pronounced off-EAPB was observed. In the aforementioned frequency range, a frequency selectivity (Q10 of about 10) was revealed by the direct forward masking method. The EAPB could be measured up to a frequency of 190 kHz, but outside this high-resolution region (outside the ultrasonic “fovea”), the frequency selectivity was weak. A simultaneous masking of a click by a tone was strong only when the delay of the click with respect to the masker onset was smaller than 1.0 ms. In a continuous regime, the tone (unlike noise) produced only a weak masking. The response to a small intensity increment of 1–4 dB was rather strong. In the frequency range of 120–140 kHz, this response exhibited a nonmonotone dependence on the signal level. The time resolving power, which was measured by the EAPB recovery functions for double clicks of various levels, was rather high, even when the intensity of the test signal was 18 dB lower than the masker level. Experimental data show that the auditory system of the harbor porpoise is tuned to detecting ultrasonic echo signals in the frequency range within 120–140 kHz. A hypothesis is put forward that the acoustic system of the harbor porpoise allows the animal, from analyzing echo signals, to estimate not only the distance to the target and the target’s intrinsic properties but also the speed with which the target is approached, the latter estimate being presumably obtained on the basis of the Doppler effect.  相似文献   

12.
The transformations of sound by the auditory periphery of the ferret have been investigated using an impulse response technique for a large number of sound locations surrounding the animal. Individual frequencies were extracted from the detailed spectral transformation functions (STFs) obtained for each stimulus location and, using sophisticated spatial interpolation routines, were used to calculate the directional response of the periphery at that frequency. The strength of the directional response was directly related to the analysis frequency. Furthermore, as the analysis frequency was increased to 20 kHz, the orientation of the directional response increased in elevation from the horizon (E0 degrees) to about E30 degrees, while the azimuthal location remained fairly constant at 30 degrees to 40 degrees from the midline. For analysis frequencies above 20 kHz, the response became increasingly directional toward the ipsilateral interaural axis. The interaural level differences (ILDs) were also calculated for all animals studied. ILDs increased from around 5 to 25 dB over the range of frequencies from 3-24 kHz. The two-dimensional patterns of iso-ILD contours were roughly concentric and centered on the interaural axis for frequencies below 16 kHz. For higher frequencies, there was a tendency for the ILD contours to be centered on more anterior and inferior locations. The increased directionality of the auditory periphery with increasing analysis frequency, together with the presence of sharp nulls in the response at high analysis frequencies, is consistent with a diffractive effect produced by the aperture of the pinna. However, this simple model does not predict the directional responses over the low to middle frequency range.  相似文献   

13.
Recently, it was demonstrated that the pitch strength of a stimulus denoted "AABB" differed from rippled noise (RN) despite the fact that their long-term spectra and autocorrelation functions are identical (Wiegrebe et al., 1998). Rippled noise is generated by adding a delayed copy of Gaussian noise back to itself; AABB is generated by concatenating equal-duration, Gaussian-noise segments where every segment is repeated once. It was shown that a simple model based on a two-stage integration process separated by a nonlinear transformation explains the pitch-strength differences quantitatively. Here, we investigate how the spectral listening region influences pitch-strength differences between RN and AABB. Bandpass filtering the two stimuli with a constant bandwidth of 1 kHz revealed a systematic effect of center frequency. For relatively high pitches (corresponding to delays, d, of 4 or 5.6 ms, pitch strength differences between AABB and RN were absent when the pass band was between 0 and 1 kHz. When the pass band was between 3.5 and 4.5 kHz, pitch-strength differences were substantial. For lower pitches (d equal to or longer than 8 ms), AABB had a substantially greater pitch strength independent of the filter center frequency. The model presented in Wiegrebe et al. (1998) cannot capture these effects of center frequency. Here, it is demonstrated that it is possible to simulate the RN-AABB pitch-strength differences, and the effect of listening region, with a computer model of the auditory periphery. It is shown that, in an auditory model, pitch-strength differences are introduced by the nonlinear transformation possibly associated with half-wave rectification or mechanoelectrical transduction. In this experimental context, however, the nonlinearity has perceptual relevance only when the differences in short-term fluctuations of AABB and RN are preserved in auditory-filter outputs. The current experiments relate the purely functional model introduced in the preceding paper to basic properties of the peripheral auditory system. The implication for neural time constants of pitch processing is discussed.  相似文献   

14.
张树林  刘扬波  曾佳  王永良  孔祥燕  谢晓明 《物理学报》2012,61(2):20701-020701
本文利用磁屏蔽室和二阶轴向梯度计抑制环境磁场噪声, 建立了单通道脑磁探测系统, 并对不用声音频率下脑听觉激励磁场N100m响应进行了初步探测.结果显示, 1000 Hz音频和100 ms持续声音激励下, N100m峰值的典型强度约为0.4 pT.在低的声音频率激励下, N100m峰出现延时, 100 Hz 和1000 Hz之间的延时差别达到25 ms.相比于1 kHz特定频率的声音激励, 1—4 kHz 随机变频下的N100m峰幅度增强, 出现了数毫秒的延时.本研究为下一步利用软件梯度计进行多通道脑磁系统和听觉机理研究奠定了一定的基础.  相似文献   

15.
Functional magnetic resonance imaging (fMRI) provides a noninvasive tool for observing correlates of neural activity in the brain while a subject listens to sound. However, intense acoustic noise is generated in the process of capturing MR images. This noise stimulates the auditory nervous system, limiting the dynamic range available for displaying stimulus-driven activity. The noise is potentially damaging to hearing and is distracting for the subject. In an active noise control (ANC) system, a reference sample of a noise is processed to form a sound which adds destructively with the noise at the listener's ear. We describe an implementation of ANC in the electromagnetically hostile and physically compact MRI scanning environment. First, a prototype system was evaluated psychoacoustically in the laboratory, using the electrical drive to a noise-generating loudspeaker as the reference. This system produced 10-20 dB of subjective noise-reduction between 250 Hz and 1 kHz, and smaller amounts at higher frequencies. The system was modified to operate in a real MR scanner where the reference was obtained by recording the acoustic scanner noise. Objective reduction by 30-40 dB of the most intense component in scanner noises was realized between 500 Hz and 3500 Hz, and subjective reduction of 12 dB and 5 dB in tests at frequencies of 600 Hz and at 1.9 kHz, respectively. Although the benefit of ANC is limited by transmission paths to the cochlea other than air-conduction routes from the auditory meatus, ANC achieves worthwhile attenuation even in the frequency range of maximum bone conduction (1.5-2 kHz). ANC should, therefore, be generally useful during auditory fMRI.  相似文献   

16.
For frequency stabilization of a cw dye laser a very fast reacting piezo mirror translator with 350 kHz lowest resonance frequency has been developed. If it is driven by appropriate control electronics it allows to suppress efficiently fast frequency changes of the jet stream dye laser. The remaining frequency jitter is 270 kHz rms for full-bandwidth detection; it drops to a few kHz if a filter time constant of 100 μs is used.  相似文献   

17.
The design of a novel single-transducer variable-frequency sonication system capable of operating at constant acoustic power over the range 20-500 kHz is described. The system employs a mass-loaded sandwich transducer arrangement and a series of transformers to provide an accurate impedance matching circuit. Approximately 0-5 W of acoustic power are produced by the system at typical operating frequencies of 20, 40, 150, 200, 300, and 450 kHz. As a first test of the single-transducer variable-sonication system we have re-examined the frequency dependence of the sonochemical oxidation of potassium iodide. Previous investigators have monitored the frequency dependence using a multi-transducer system to obtain the different frequencies required. In accordance with the earlier findings, we have observed an eightfold increase in the rate of potassium iodide oxidation at 300 kHz compared to 20 kHz, as well as an inversion in the rate of oxidation for argon and air-saturated solutions at 300 kHz. Possible reasons for the rate variations are discussed.  相似文献   

18.
The Risso's dolphin (Grampus griseus) is an exclusively cephalopod-consuming delphinid with a distinctive vertical indentation along its forehead. To investigate whether or not the species echolocates, a female Risso's dolphin was trained to discriminate an aluminum cylinder from a nylon sphere (experiment 1) or an aluminum sphere (experiment 2) while wearing eyecups and free swimming in an open-water pen in Kaneohe Bay, Hawaii. The dolphin completed the task with little difficulty despite being blindfolded. Clicks emitted by the dolphin were acquired at average amplitudes of 192.6 dB re 1 microPa, with estimated sources levels up to 216 dB re 1 microPa-1 m. Clicks were acquired with peak frequencies as high as 104.7 kHz (Mf(p) = 47.9 kHz), center frequencies as high as 85.7 kHz (Mf(0) = 56.5 kHz), 3-dB bandwidths up to 94.1 kHz (M(BW) = 39.7 kHz), and root-mean-square bandwidths up to 32.8 kHz (M(RMS) = 23.3 kHz). Click durations were between 40 and 70 micros. The data establish that the Risso's dolphin echolocates, and that, aside from slightly lower amplitudes and frequencies, the clicks emitted by the dolphin were similar to those emitted by other echolocating odontocetes. The particular acoustic and behavioral findings in the study are discussed with respect to the possible direction of the sonar transmission beam of the species.  相似文献   

19.
Groups of human subjects were exposed in a diffuse sound field for 16--24 h to an octave-band noise centered at 4, 2, 1, or 0.5 kHz. Sound-pressure levels were varied on different exposure occasions. At specified times during an exposure, the subject was removed from the noise, auditory sensitivity was measured, and the subject was returned to the noise. Temporary threshold shifts (TTS) increased for about 8 h and then reached a plateau or asymptote. The relation between TTS and exposure duration can be described by a simple exponential function with a time constant of 2.1 h. In the frequency region of greatest loss, threshold shifts at asymptote increased about 1.7 dB for every 1 dB increase in the level of the noise above a critical level. Critical levels were empirically estimated to be 74.0 dB SPL at 4 kHz. 78 dB at 2 kHz, and 82 dB at 1 and 0.5 kHz. Except for the noise centered at 4.0 kHz, threshold shifts were maximal about 1/2 octave above the center frequency of the noise. A smaller second maximum was observed also at 7.0 kHz for the noise centered at 2.0 kHz, at 6.0 kHz for the noise centered at 1.0 kHz, and at 5.5 kHz for the noise centered at 0.5 kHz. After termination of the exposure, recovery to within 5 dB of pre-exposure thresholds was achieved within 24 h or less. Recovery can be described by a simple exponential function with a time constant of 7.1 h. The frequency contour defined by critical levels matches almost exactly the frequency contour defined by the E-weighting network.  相似文献   

20.
Auditory steady-state evoked potentials were measured in a bottlenose dolphin (Tursiops truncatus) in response to single and multiple sinusoidal amplitude modulated (SAM) tones. Tests were conducted in air using a "jawphone" sound projector. Evoked potentials were recorded noninvasively using surface electrodes embedded in suction cups. Sound stimuli consisted of SAM tones with 1, 2, 3, or 4 carrier frequencies (10, 20, 30, 40 kHz), each with a unique modulation frequency. Stimulus sound pressure levels were varied in 5-dB steps from approximately 120 to 60-75 dB re 1 microPa, depending on frequency. Evoked potentials followed the temporal envelope of each stimulus, resulting in spectral components at each unique modulation frequency. Spectral analysis was used to evaluate the response amplitude for each carrier as a function of stimulus level. There were no significant differences between thresholds obtained with single and multiple stimuli at 10, 30, and 40 kHz. At 20 kHz, thresholds obtained with three components were higher than those obtained with four components, possibly revealing interactions between stimuli with less than one octave frequency separation. The use of multiple SAM stimuli may offer substantial advantages for studies of marine mammal hearing, where testing time and access to subjects are typically limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号