首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solubility of calcium isosaccharinate Ca(ISA)2(c) was determined at 23°C as a function of pH (1–14) and calcium ion molality (0.03–0.52). The similarity of solubility from the over- and undersaturation directions for different equilibration periods indicated that equilibrium in these solutions was reached rapidly (< 7 days) and that these data can be used to develop thermodynamic equilibrium constants. The solubility data were interpreted using the Pitzer ion–interaction model. The logarithms of the thermodynamic equilibrium constants determined from these data were 1.30 for the dominant reaction at pH < 4.5 [Ca(ISA)2(c) + 2H+ Ca2+ + 2HISA(aq)], and –2.22 for the dominant reaction at 4.5 [Ca(ISA)2(c)+ Ca(ISA)2(aq)]. In addition, the logarithm of the dissociation constant of HISA [HISA(aq) ISA- + H+] was calculated to be –4.46.  相似文献   

2.
The enthalpies of dilution of aqueous solutions of HCl, H3PO4, NaOH, NaH2PO4, Na2HPO4 and Na3PO4 in the molality range 0.1 to 1.0 mole-kg–1 have been determined at 30°C. The relative apparent molal enthalpies L of HCl, NaOH, NaH2PO4 and Na2HPO4 have been determined with the aid of an extended form of the Debye-Hückel limiting law. The relative apparent molal enthalpies for Na3PO4 solutions have been corrected for hydrolysis. A value of H H o =9525±150 cal-mole–1 was determined for the heat of hydrolysis of PO 4 –3 . This value gives H 3 o =3815±150 cal-mole–1 for the ionization of H2PO 4 , which is in good agreement with the value of H 3 o =3500±500 cal-mole–1 determined directly by Pitzer at 25°C. The relative apparent molal enthalpies for H3PO4 solutions have been corrected for ionization. A value of H 1 o =–1900±150 cal-mole–1 was obtained for the heat of ionization of H3PO4 to H++H2PO 4 . This value is in good agreement with the value of H 1 o =–2031 cal-mole–1 at 30°C determined by Harned and Owen from the temperature coefficient of the equilibrium constant and H 1 o =–1950±80 cal-mole–1 at 25°C determined from calorimetry by Pitzer.  相似文献   

3.
The -crystalline form zirconium phosphate was investigated. For its lattice parameters was found:a=0.538 nm,b=0.664 nm,c=2.459 nm, =94.2° and basal spacing (d)=1.22 nm. It was determined by IR spectrophotometric method that the phosphate is present in groups of H2PO 4 and PO 4 3– of equal quantity. Two moles of crystalline water per formula unit were found where the moles are bound differently. The compound can be characterized by the following chemical formula: Zr(HPO4)(PO4)·2H2O.  相似文献   

4.
Summary Reaction of 5,7-dioxo-1,4,8,11-tetra-azacyclotetradecane with acrylonitrile gives the dicyanoethylated ligand (L). The CuII complex [CuLH-2]·2H2O has been isolated from basic solution where the macrocycle is deprotonated and acts as a dinegative quadridentate ligand. The ligand L is protonated in acidic solution and the ionisation equilibria can be summarised as LH inf2 sup2+ LH+ +H+; K1 LH+ L + H+; K2 where pK1 = 3.05 and pK2 = 5.94 at 25 °C and I = 0.1 mol dm-3 (NaNO3). Complexation with CuII can be represented by the equilibria at 25 °C. Cu2+ + L [CuLH-1]+ + H+; log11 – 1 = -3.43 Cu2+ + L [CuLH-2] + 2H2+; log11 – 2 = -9.18 For NiII only the single equilibrium is of importance. Ni2+ + L [NiLH-2] + 2H2+; log11 – 2 = -14.45  相似文献   

5.
Zusammenfassung Das Dimerisierungsgleichgewicht geladener Moleküle 2M zD 2z wurde als einfaches Modellsystem gewählt, um — unter Verwendung von bei verschiedenen Ionenstärken gewonnenen relaxationskinetischen Meßergebnissen — die Bestimmung ionenstärkenunabhängiger Reaktionsgeschwindigkeitskonstanten und der thermodynamischen Gleichgewichtskonstante zu demonstrieren.
Evaluation of rate constants utilizing relaxation data obtained at variable ionic strength
The monomer-dimer equilibrium of charged molecules 2M zD 2z has been used as a simple model to demonstrate how ionic strength independent rate parameters and the thermodynamic equilibrium constant can be determined from relaxation kinetic data obtained at variable ionic strength.


Mit 3 Abbildungen  相似文献   

6.
Summary The kinetics of reversible complexation of NiII and CoII with iminodiacetato(pentaammine)cobalt(III), [(NH3)5-Co(idaH2)]3+ and NiII with iminodiacetato(tetraammine)-cobalt(III), [(NH3)4Co(idaH)]2+, have been investigated by the stopped-flow technique at 25 °C, pH = 5.7–6.9 and I = 0.3 mol dm –3. The reaction paths (NH3)5Co(idaH)2++M2+(NH3)5Co(ida)M3++H+ (NH3)5Co(ida)++M2+(NH3)5Co(ida)M3+ (NH3)4Co(ida)++Ni2+(NH3)4Co(ida)Ni3+ have been identified (idaH = N+H2(CH2CO2)2H, ida = NH(CH2COO)2–]. The rate parameters for the formation and dissociation of the binuclear species are reported. The data are essentially consistent with an I d mechanism. The dissociation rate constants of the binuclear species indicate that Ni2+ and Co2+ are chelated by the coordinated iminodiacetate moiety.  相似文献   

7.
Ultraviolet absorbance spectra of ferric ions in 0.68m NaClO4 were studied as a function of pH at 4.0, 14.9, and 25.0°C. The results provided an evaluation of the stability constant for the formation of FeOH2+ which is *1=[FeOH +][H +]/[Fe 3+]. The enthalpy change for the reaction Fe3++H2O FeOH2++H+ was calculated as 10.0±0.3 kcal-mole–1. Increasing temperature was also found to promote the reaction Fe3++2H2O Fe(OH) 2 + +2H+. Our results were combined with the results of other to produce an expression describing the first hydrolysis equilibrium at ionic strengths between 0 and 3m and temperatures between 4.0 and 45.0°C at 1 atm total pressure. At 25°C and 0.68m the ionic strength *1=1.90×10-3  相似文献   

8.
The concentration dependence of the H2O spectra in solutions of tetrabutylammonium bromide Bu4NBr in methylene chloride was investigated by IR-spectroscopy. At low salt and H2O concentrations the equilibrium: Br f +HOHfBrHOH dominates where f indicates free or not hydrogen-bonded Br and H2O. With increasing salt content, BrH–O–HBr complexes are present in addition. At high salt and H2O content, including the saturated aqueous Bu4NBr solution, H-bonded cyclic dimers seem to be important.Presented at the sixth Italian meeting on Calorimetry and Thermal Analysis (AICAT) held in Naples. December 4–7, 1984.  相似文献   

9.
Calculations are presented of the electronic structures of some phosphate ions, namely, H3PO4, H2PO 4 , HPO 4 = , PO 4 , HPO3, and PO 3 . It is shown that the character of the P-O bonds is marked and the 3d orbitals contribute substantially to the bonding. Using the total energy data for the orthophosphate ions, the ratio of the dissociation constants for the ions is calculated and found to be in good agreement with the experimental data.  相似文献   

10.
Summary The kinetics of the anation reaction of [Co(NH3)5H2O]3+ by H3PO3/H2PO 3 , to give [CoH2PO3(NH3)5]2+, have been studied at 60, 70 and 80°C, in the acidity range [H+](M)=1.5 · 10–1 –2.0 · 10–3. Only H2PO3 is found to be reactive. The rate data is consistent with an Id mechanism. The mean value of outer sphere association of [Co(NH3)H2O]3+ with H2PO 3 is 1.5 M–1. Values of the interchange constants are: 1044ki(s–1)= 0.29, 1.47, 5.13, at 60, 70 and 80 °C respectively (H= 1.4 · 102KJmol–1, S=8.3 · 10 JK–1 mol–1). The first acidity constant of H3PO3 at I=1.0 has also been determined: 102Ka(M)=4.8, 5.2 and 5.5, at 25, 40 and 50 °C respectively.  相似文献   

11.
The potentiometric method is used to measure the equilibrium potential in the Ti(IV)/Ti(III) system and determine that monophosphate Ti(IV) complexes and Ti3+hydrated complexes dominate in phosphate–perchlorate acid solutions, 4M(H, Na)ClO4, at of 5 × 10–2to 4 × 10–1M. Equations that describe the total electrode reaction are proposed. Decreasing the concentration of free hydrogen ions from 3 to 0.12 M results in the deprotonation of TiO(H2PO4)+complexes and the formation of TiO(HPO4) complexes. Equilibrium constants for reactions of the formation of Ti(IV) monophosphate complexes and the protonation of TiO(HPO4) complex are calculated.  相似文献   

12.
A Picker flow microcalorimeter and a flow densimeter were used to obtain apparent molar heat capacities and apparent molar volumes of aqueous solutions of Na3PO4 and mixtures of Na2HPO4 and NaH2PO4. Identical measurements were also made on solutions of tetramethylammonium salts to evaluate the importance of anion-cation interaction. The experimental apparent molar properties were analyzed in terms of a simple extended Debye-Hückel model and the Pitzer ion-interaction model, both with a suitable treatment for the effect of chemical relaxation on heat capacities, to derive the partial molar properties of H2PO 4 (aq), HPO 4 2– (aq) and PO 4 3– (aq) at infinite dilution. The volume and heat capacity changes for the second and third ionization of H3PO4(aq) have been determined from the experimental data. The importance of ionic complexation with sodium is discussed.  相似文献   

13.
In the 3.33–4.95 pH range, buffered with an excess of phenanthroline (phen), [Mn 3 IV (-O)4(phen)4(H2O)2]4+ (1) quantitatively oxidises H2O2 to O2; the only manganese product is [Mn 2 III,IV (-O)2(phen)4]3+ (2), provided a large excess of H2O2 is avoided; an excess of H2O2 [ > 7 × (1)] reduces (1) to Mn2+. When (1) and H2O2 were mixed in the stoichiometric molar proportion (1:0.75), the measured second-order rate constant for the reduction of (1) to (2) increased with increasing [H+], tending to saturate at lower pH. Added phenanthroline did not affect the rate constant. The results suggest an inner-sphere mechanism, ca. 10 times higher kinetic activity for (1) than for its hydroxo derivative [Mn 3 IV (-O)4(phen)4(OH)(H2O)]3+ (1h), and a hydrolysis constant K a = (2.9 ± 1) × 10–4 mol dm–3 for (1) (1h) + H+.  相似文献   

14.
The effect of extracting solvent was studied on the ion-pair extraction reactions with a special interest in the effect of molecular shape (planar or non-planar) of the solvent. The following two reactions were investigated: (HNN)o + (Q+)W (Q·NN)o + (H+)W (Extraction I); (Q-ClO4)o + (Pi)w (Q·Pi)o + (ClO 4 )w (Extraction II), where HNN, NN, Pi, and Q+ represent 1-nitro-2-naphthol, its base form (1-nitro-2-naphtholate), picrate, and a cationic species, respectively. Above extraction equilibria were confirmed to hold in cases of various extracting solvents including planar solvents (1-chloronaphthalene, etc.) and non-planar solvents (1,2-dichloroethane, chloroform). An approximately linear relationship was found to exist between the extraction constants of Extraction I (logK ex I ) and the Kosower's Z-value of extracting solvents. It was also found that the compatibility between the molecular shape of the ion-pair complexes and that of the extracting solvents affected the extractability to a considerable extent.  相似文献   

15.
Summary Rate constants are reported for the reaction of [PtCl4]2– with hydrochloric-perchloric acid mixtures, in aqueous methanol and aqueous t-butanol at 308.2 K. The observed first-order rate constants are, from their dependence on chloride concentration, divisible into forward and reverse rate constants for the equilibrium: [PtCl14]2–+H2O[PtCl3(OH2)]+Cl. The solvent dependence of aquation rates for [PtCl4]2– is compared with those for other chlorotransition metal complexes, and discussed in terms of the Grunwald-Winstein method of mechanism diagnosis in organic systems. The solvent dependence of rates of [PtCl4]2– formation is compared with the rates of formation of other metal complexes; differences between this platinum reaction and, for example, nickel(II) formation, are rationalised in terms of the reactant charge product difference and consequent solvent permittivity effects on rate trends.  相似文献   

16.
Conductimetric and diaphragm cell techniques have been used to measure diffusion of aqueous potassium phosphate solutions at 25°C from 0.01 to 0.10 mol-dm–3 (M). A significant portion of the aqueous K3PO4 component diffuses as equimolar amounts of potassium hydrogen phosphate and potassium hydroxide produced by hydrolysis: K3PO4+H2O=K2HPO4+KOH. Because OH diffuses more rapidly than HPO 4 2– , the total flow of KOH exceeds the flow of K2HPO4. The extra flow of KOH constitutes coupled transport of a second solute component. Ternary diffusion coefficients that describe interacting flows of K3PO4 and KOH components are reported. At low concentrations where phosphate is strongly hydrolyzed, the molar flux of the KOH component produced by diffusion of K3PO4 is six times larger than the flux of the K3PO4 component. Binary diffusion coefficients for aqueous K2HPO4 solutions are also reported. It is shown that ternary transport coefficients for K3PO4 solutions can be estimated from the properties of binary solutions of K2HPO4 and KOH.  相似文献   

17.
Raman spectra have been measured for aqueous ZnSO4 solutions under hydrothermal conditions at steam saturation to 244°C; solubility has been recorded as a function of temperature from 25 to 256°C. The high-temperature Raman spectra contained two polarized bands, which suggest that a second sulfato complex, possibly bidentate, is formed in solution, in addition to the 1:1 zinc(II) sulfato complex, which is the only ion pair identified at lower temperatures. Under hydrothermal conditions, it was possible to observe the hydrolysis of the zinc(II) aquo ion by measuring the relative intensity of bands due to SO 4 2– and HSO 4 according to the equilibrium reaction Zn(OH2)6]2+ + SO 4 2– [Zn(OH2)5OH]+ + HSO 4 The precipitate in equilibrium with the solution at 210°C could be characterized as ZnSO4 · H2O (gunningite) by x-ray diffraction (XRD) and Raman and infrared spectroscopy. At 244°C the equilibrium precipitate could be identified as ZnSO4 (zincosite).  相似文献   

18.
Solubility studies on UO2(c), precipitated at 90°C from low-pH U(IV) solutions, were conducted under rigidly controlled redox conditions maintained by EuCl2 as a function of pH and from the oversaturation direction. Samples were equilibrated for 24 days at 90°C and then for 1 day at 22°C. X-ray diffraction (XRD) analyses of the solid phases, along with the observed solubility behavior, identified UO2(c) as the dominant phase at pH1.2 and UO2(am) as the dominant phase at pH1.2. The UV-Vis-NIR spectra of the aqueous phases showed that aqueous uranium was present in the tetravalent state. Our ability to effectively maintain uranium in the tetravalent state during experiments and the recent availability of reliable values of Pitzer ion-interactionparameters for this system have helped to set reliable upper limits for the log K o value of –60.2 + 0.24 for the UO2(c) solubility [UO2(c) + 2H2O U4+ + 4OH] and of >–11.6 for the formation of U(OH)4(aq) [U4++ 4H2O U(OH)4(aq) + 4H+]  相似文献   

19.
The main objective of this study was to develop a thermodynamic model for predicting Cr(III) behavior in concentrated NaOH and in mixed NaOH–NaNO3 solutions for application to developing effective caustic leaching strategies for high-level nuclear waste sludges. To meet this objective, the solubility of Cr(OH)3(am) was measured in 0.003 to 10.5 m NaOH, 3.0 m NaOH with NaNO3 varying from 0.1 to 7.5 m, and 4.6 m NaNO3 with NaOH varying from 0.1 to 3.5 m at room temperature (22 ± 2°C). A combination of techniques, X-ray absorption spectroscopy (XAS) and absorptive stripping voltammetry analyses, were used to determine the oxidation state and nature of aqueous Cr. A thermodynamic model, based on the Pitzer equations, was developed from the solubility measurements to account for dramatic increases in aqueous Cr with increases in NaOH concentration. The model includes only two aqueous Cr species, Cr(OH) 4 and Cr2O2(OH) 4 (although the possible presence of a small percentage of higher oligomers at >5.0 m NaOH cannot be discounted) and their ion–interaction parameters with Na+. The logarithms of the equilibrium constants for the reactions involving Cr(OH) 4 [Cr(OH)3(am) + OH Cr(OH) 4 ] and Cr2O2(OH) 4 2– [2Cr(OH)3(am) + 2OH Cr2O2(OH) 4 2– + 2H2O] were determined to be –4.36 ± 0.24 and –5.24 ± 0.24, respectively. This model was further tested and provided close agreement between the observed Cr concentrations in equilibrium with Cr(OH)3(am) in mixed NaOH–NaNO3 solutions and with high-level tank sludges leached with and primarily containing NaOH as the major electrolyte.  相似文献   

20.
A platinum-lined flowing autocláve facility was used to investigate the solubility behavior of magnetite (Fe3O4) in alkaline sodium phosphate and ammonium hydroxide solutions between 21 and 288°C. Measured iron solubilities were interpreted via a Fe(II)/Fe(III) ion hydroxo-, phosphato-, and ammino-complexing model and thermodynamic functions for these equilibria were obtained from a least-squares analysis of the data. A total of 14 iron ion species were fitted. Complexing equilibria are reported for 8 new species: Fe(OH)(HPO4), Fe(OH)2(HPO4)2–, Fe(OH)3(HPO4)2–, Fe(OH)(NH3)+, Fe(OH)2(PO4)3–, Fe(OH)4(HPO4)3–, Fe(OH)2(H2PO4), and Fe(OH)3(H2PO4)3–. At elevated temperatures, hydrolysis and phosphato complexing tended to stabilize Fe(III) relative to Fe(II), as evidenced by free energy changes fitted to the oxidation reactions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号