首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Electronic excitation energy transfer (EET) between molecules of polymethine dyes bound to human serum albumin (HSA) has been established and studied by absorption and fluorescence spectroscopy as well as by fluorescence decay measurements. In this system, excitation of the donor dye molecule leads to fluorescence of the acceptor dye molecule, both bound to HSA, with donor fluorescence quenching by the acceptor. The short distance between the donor and the acceptor (25-28 A) revealed from the Forster model of EET as well as some spectroscopic data show that both molecules are probably located in the same binding domain of HSA. The role of HSA is to bring donor and acceptor molecules together to a distance adequate to achieve EET as well as to increase the donor and acceptor fluorescence quantum yields. Efficient quenching of the intrinsic HSA fluorescence by some polymethine dyes (oxonols) is observed. The experimental results fit well a model for the formation of a weakly fluorescent dye-HSA complex; the quencher in this complex should be located in the immediate vicinity of the HSA fluorophore group (Trp(214)).  相似文献   

2.
3.
A theory is presented for intramolecular electronic energy transfer in bichromophoric molecules. Expressions are given for the donor moiety fluorescence (phosphorescence) decay and for its fluorescence (phosphorescence) quantum yield in terms of the average distance between the donor and acceptor moieties and the donor—acceptor bridge flexibility. Comparison with available experimental data supports the predictions of the analysis.  相似文献   

4.
Electronic excitation energy transfer has been carried out between molecules of carbocyanine dyes bound noncovalently to DNA. 3,3′,9-Triethyl-5,5′-dimethyloxacarbocyanine iodide was used as an energy donor and 3,3′-diethylthiacarbocyanine iodide as an acceptor dye. In this process, the band belonging to the donor is observed in the fluorescence excitation spectrum of the acceptor. Donor fluorescence quenching by the acceptor in the presence of DNA was studied. The results of the experiments are discussed in terms of the Dye-DNA stoichiometric complex formation and with respect to concentrating the dyes in the microphase (pseudophase) of the biopolymer.  相似文献   

5.
Host-guest materials containing strongly fluorescent donor and acceptor molecules have been prepared. Fine-tuning of the donor to acceptor distance in this material allows beautiful visible and quantitative observation of electronic excitation energy transfer phenomena. Oxonine and pyronine have been used as guest molecules and zeolite L as host. The dyes have been inserted by ion exchange. Stationary state and time-resolved experiments have been carried out with zeolite crystals of 300 and 700 nm size in the dye concentration range of 10(-4) mol/L up to 0.042 mol/L. The fluorescence decay of the donor and the pumping of the acceptor via energy transfer, which can be well observed, became faster with increasing loading. The behavior of the system follows requirements expected for F?rster energy transfer material.  相似文献   

6.
Doped nanoparticles were prepared from pyrene and phenanthrene using a facile reprecipitation method. The doped nanoparticles presented unique delayed fluorescent emissions of pyrene under the unprotected condition. The ratio of the intensity of delayed fluorescence (IDF) to that of phosphorescence (IP) is about 4:1, which almost keeps unchanged with the decrease of pyrene content at room temperature. The intensity of the delayed fluorescence emissions is dependent on the relative content of pyrene, as well as the aggregation degree of nanoparticles. The delayed emissions are contributed to efficient triplet‐triplet energy transfer from phenanthrene (donor) to pyrene (acceptor). Steady fluorescence measurement have proved that the singlet‐singlet energy transfer process was also existent dominated by the radiation energy transfer mechanism.  相似文献   

7.
《Chemphyschem》2002,3(12):1005-1013
We report on a study of a physically formed host–guest system, which was designed to be investigated by fluorescence energy transfer. All donor and acceptor molecules used were cyanine dyes. Investigation was performed at the ensemble level as well as at the single‐molecule level. The ensemble measurements revealed a distribution of binding sites as well for the donor as for the acceptor. Accordingly, we found a distribution of the energy transfer efficiency. At the single‐molecule level, these distributions are still present. We could discriminate entities that show very efficient energy transfer, some that do not show any energy transfer and systems whose energy transfer efficiency is only about 50 %. The latter allowed the time‐resolved detection of energy transfer of single entities through the acceptor decay. Finally, we discuss the observation that the energy transfer efficiency fluctuates as a function of time.  相似文献   

8.
We used lanthanide-ion doped oxide nanoparticles, Y(0.6)Eu(0.4)VO(4), as donors in fluorescent resonance energy transfer (FRET) experiments. The choice of these nanoparticles allows us to combine the advantages of the lanthanide-ion emission, in particular the long lifetime and the large Stokes shift between absorption and emission, with the detectability of the nanoparticles at the single-particle level. Using cyanine 5 (Cy5) organic molecules as acceptors, we demonstrated FRET down to the single-nanoparticle level. We showed that, due to the long donor lifetime, unambiguous and precise FRET measurements can be performed in solution even in the presence of large free acceptor concentrations. Highly efficient energy transfer was obtained for a large number of acceptor molecules per donor nanoparticle. We determined FRET efficiencies as a function of Cy5 concentration which are in good agreement with a multiple acceptor-multiple donor calculation. On the basis of the donor emission recovery due to acceptor photobleaching, we demonstrated energy transfer from single-nanoparticle donors in fluorescence microscopy experiments.  相似文献   

9.
A novel real-time in situ detection method for the investigation of cellulase–cellulose interactions based on fluorescence resonance energy transfer (FRET) has been developed. FRET has been widely used in biological and biophysical fields for studies related to proteins, nucleic acids, and small biological molecules. Here, we report the efficient labeling of carboxymethyl cellulose (CMC) with donor dye 5-(aminomethyl)fluorescein and its use as a donor in a FRET assay together with an Alexa Fluor 594 (AF594, acceptor)–cellulase conjugate as acceptor. This methodology was successfully employed to investigate the temperature dependency of cellulase binding to cellulose at a molecular level by monitoring the fluorescence emission change of donor (or acceptor) in a homogeneous liquid environment. It also provides a sound base for ongoing cellulase–cellulose study using cellulosic fiber.  相似文献   

10.
Symmetric‐ and asymmetric hexaarylbenzenes (HABs), each substituted with three electron‐donor triarylamine redox centers and three electron‐acceptor triarylborane redox centers, were synthesized by cobalt‐catalyzed cyclotrimerization, thereby forming compounds with six‐ and four donor–acceptor interactions, respectively. The electrochemical‐ and photophysical properties of these systems were investigated by cyclovoltammetry (CV), as well as by absorption‐ and fluorescence spectroscopy, and compared to a HAB that only contained one neighboring donor–acceptor pair. CV measurements of the asymmetric HAB show three oxidation peaks and three reduction peaks, whose peak‐separation is greatly influenced by the conducting salt, owing to ion‐pairing and shielding effects. Consequently, the peak‐separations cannot be interpreted in terms of the electronic couplings in the generated mixed‐valence species. Transient‐absorption spectra, fluorescence‐solvatochromism, and absorption spectra show that charge‐transfer states from the amine‐ to the boron centers are generated after optical excitation. The electronic donor–acceptor interactions are weak because the charge transfer has to occur predominantly through space. Moreover, the excitation energy of the localized excited charge‐transfer states can be redistributed between the aryl substituents of these multidimensional chromophores within the fluorescence lifetime (about 60 ns). This result was confirmed by steady‐state fluorescence‐anisotropy measurements, which further indicated symmetry‐breaking in the superficially symmetric HAB. Adding fluoride ions causes the boron centers to lose their accepting ability owing to complexation. Consequently, the charge‐transfer character in the donor–acceptor chromophores vanishes, as observed in both the absorption‐ and fluorescence spectra. However, the ability of the boron center as a fluoride sensor is strongly influenced by the moisture content of the solvent, possibly owing to the formation of hydrogen‐bonding interactions between water molecules and the fluoride anions.  相似文献   

11.
We present highly time-resolved spontaneous fluorescence spectra of a porphyrin array system that consists of an energy donor and an acceptor linked by a phenyl group. The donors are meso-meso directly linked zinc(II) porphyrin arrays and the acceptor is a zinc(II) 5,15-di(phenylethynyl)porphyrin. The spectra over the entire Q (S1) emission band following the excitation of the donor B (S2) state have been measured directly without the conventional spectral reconstruction method. The time-resolved fluorescence spectra revealed detailed energy relaxation processes within the donor and subsequent energy transfer to the acceptor. The observed energy transfer rates to the acceptor are consistent with the Forster energy transfer rates calculated on the assumption that the energy is localized in the Q state of each porphyrin unit of the donor prior to the energy transfer. The passage of the energy deposited initially on one porphyrin unit of the donor to the acceptor illustrates a sequence of energy delocalization and localization processes before it finally reaches the acceptor.  相似文献   

12.
DONOR FLUORESCENCE AS A PROBE OF ENERGY TRANSFER*,†   总被引:1,自引:0,他引:1  
Abstract— When a system of N similar molecules (the donors) gives its excitation energy rapidly enough to a dissimilar acceptor, the donor fluorescence rate equals the energy removal rate. Analysis of donor fluorescence decay then provides information about the N -donor system even if the acceptor is chemically unidentified. The dependence of the removal rate on N in a linear polymer in the extreme limit of very strong interdonor coupling is compared with that of very weak interdonor coupling. The principal result is that removal can be slower in the strong coupling limit because standing-wave excitons tend to avoid boundaries. Possible application of the concept of standing-wave excitons to photosynthetic units is discussed. The theory of diffusive energy transfer (very weak coupling limit) is also discussed, and some of its basic formulas given in simple form.  相似文献   

13.
The electrochemistry and electrogenerated chemiluminescence (ECL) of four kinds of electron donor–acceptor molecules exhibiting thermally activated delayed fluorescence (TADF) is presented. TADF molecules can harvest light energy from the lowest triplet state by spin up‐conversion to the lowest singlet state because of small energy gap between these states. Intense green to red ECL is emitted from the TADF molecules by applying a square‐wave voltage. Remarkably, it is shown that the efficiency of ECL from one of the TADF molecule could reach about 50 %, which is comparable to its photoluminescence quantum yield.  相似文献   

14.
A small series of donor–acceptor molecular dyads has been synthesized and fully characterized. In each case, the acceptor is a dicyanovinyl unit and the donor is a boron dipyrromethene (BODIPY) dye equipped with a single styryl arm bearing a terminal amino group. In the absence of the acceptor, the BODIPY‐based dyes are strongly fluorescent in the far‐red region and the relaxed excited‐singlet states possess significant charge‐transfer character. As such, the emission maxima depend on both the solvent polarity and temperature. With the corresponding push–pull molecules, there is a low‐energy charge‐transfer state that can be observed by both absorption and emission spectroscopy. Here, charge‐recombination fluorescence is weak and decays over a few hundred picoseconds or so to recover the ground state. Overall, these results permit evaluation of the factors affecting the probability of charge‐recombination fluorescence in push–pull dyes. The photophysical studies are supported by cyclic voltammetry and DFT calculations.  相似文献   

15.
The decay kinetics of the donor state is studied; this decay is determined by the resonance energy transfer to the surrounding donor molecules of the medium. A new element is the consideration of the strong interaction of the donor with the acceptor over short distances, thanks to which the onset of decomposition assumes an exponential character. It was shown that this circumstance does not affect the fluorescence quenching, but it can exert a considerable effect on phenomena related to radiation shielding.  相似文献   

16.
Resonance energy transfer from two-photon absorbing fluorene derivatives to the photochromic compound 3,4-bis-(2,4,5-trimethyl-thiophen-3-yl)furan-2,5-dione (PC 1) is investigated in hexane under one- and two-photon excitation. The quenching of the steady-state fluorescence of donor molecules in the presence of the diarylethene acceptor is used to study the nature of resonance energy transfer. The F?rster distances and critical acceptor concentrations are determined for nonbound donor-acceptor pairs in homogeneous molecular ensembles. Quite significantly, up to a two-fold enhancement in the velocity of the photochromic transformation of 1, in the presence of two-photon absorbing fluorene derivatives, is demonstrated.  相似文献   

17.

The intermolecular cross-linking of DNA with a rigid bisintercalator, 1,4-bis(( N -methylquinolinium-4-yl)vinyl)benzene (pMQVB) has been studied using fluorescence resonance energy transfer (FRET), fluorescence anisotropy measurements, and dynamic fluorescence microscopy. Short DNA duplexes, single-labeled with fluorescein (donor) and x-rhodamine (acceptor), were used as energy transfer partners. Due to the quenching effect of pMQVB on the emission of both fluorescein and x-rhodamine, the energy transfer was monitored using the corrected Stern-Volmer plots. The cross-linking ability of pMQVB depended on the ligand structure; the planar E , E isomer cross-linked DNA contrary to the non-planar E , Z isomer. Dynamic fluorescence microscopy observation also demonstrated the ability of pMQVB to cross-link large T4 DNA molecules.  相似文献   

18.
The Förster resonance energy transfer (FRET) properties in poly(methyl methacrylate) copolymers containing 2‐(pyridine‐2‐yl) thiazole dyes were studied upon systematic variation of the donor‐to‐acceptor ratio. To this end, 2‐(pyridine‐2‐yl) thiazole dyes specially designed for the usage as energy donor and acceptor molecules were incorporated within one polymer chain. Poly(methyl methacrylate) copolymers containing these donor and acceptor dyes were synthesized using the RAFT polymerization method. Copolymers with a molar mass (Mn) of nearly 10,000 g/mol were achieved with dispersity index values (?) under 1.3. The presented copolymers act as a model system for the FRET investigation. Förster resonance energy transfer properties of the copolymers are characterized by steady state as well as time resolved fluorescence spectroscopy. The results indicate that the energy transfer rates and the transfer efficiencies are tunable by variation of the donor‐acceptor‐ratio. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4765–4773  相似文献   

19.
A series of donor–acceptor–donor triazine-based molecules with thermally activated delayed fluorescence (TADF) properties were synthesized to obtain highly efficient blue-emitting OLEDs with non-doped emitting layers (EMLs). The targeted molecules use a triazine core as the electron acceptor, and a benzene ring as the conjugated linker with different electron donors to alternate the energy level of the HOMO to further tune the emission color. The introduction of long alkyl chains on the triazine core inhibits the unwanted intermolecular D –D/A–A-type π–π interactions, resulting in the intermolecular D–A charge transfer. The weak aggregation-caused quenching (ACQ) effect caused by the suppressed intermolecular D –D/A–A-type π–π interaction further enhances the emission. The crowded molecular structure allows the electron donor and acceptor to be nearly orthogonal, thereby reducing the energy gap between triplet and singlet excited states (ΔEST). As a result, blue-emitting devices with TH-2DMAC and TH-2DPAC non-doped EMLs showed satisfactory efficiencies of 12.8 % and 15.8 %, respectively, which is one of the highest external quantum efficiency (EQEs) reported for blue TADF emitters (λpeak<475 nm), demonstrating that our tailored molecular designs are promising strategies to endow OLEDs with excellent electroluminescent performances.  相似文献   

20.
The migration and diffusion modulated excitation energy transfer has been studied in a new dye pair 7-diethylamino-4-methylcoumarin (donor) to 3,3'-dimethyloxacarbocyanine iodide (acceptor) by steady-state and picosecond time-resolved spectroscopy. To reduce the artifact of self-absorption, at high donor concentrations, the time-resolved studies have been carried out in thin films of polyvinyl alcohol (solid matrix) and in methanol (liquid phase) at front-face geometry of excitation. The Forster-type (nonradiative) energy transfer [Discuss. Faraday Soc. 27, 7 (1959)] takes place directly from donor to acceptor in case of solid matrix, while Yokota-Tanimoto model [J. Phys. Soc. Jpn. 22, 779 (1967)] for diffusion has been found to be operating in the liquid phase. It has been found here that the high interaction strength between donor and acceptor molecules as compared to that among donors masks the effect of energy migration and diffusion at high donor concentrations. The rate and efficiency of energy transfer increase with increasing the acceptor concentration. This has been confirmed by the study of acceptor kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号