首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The atomic and magnetic structures of La0.5Ca0.5CoO3 cobaltite have been studied by the neutron diffraction technique at high pressures of up to 4 GPa in the 10- to 300-K temperature range. The pressure dependences of the structural parameters have been obtained. The Curie temperature increases with the pressure with the coefficient dT C/dP = 1 K/GPa, demonstrating the stability of the ground ferromagnetic (FM) state. The pressure dependence of the ground FM state in La0.5Ca0.5CoO3 is in drastic contrast with that for La1 − x Ca x CoO3 at a lower calcium content (x < 0.3). For the latter compound, the pressure suppressed the ground FM state and a large negative pressure coefficient of the Curie temperature (dT C/dP ∼ −10 K/GPa) was observed. The nature of such a phenomenon is analyzed in the framework of the double exchange model also taking into account the changes in the electron configuration of Co3+ ions.  相似文献   

2.
The crystal and magnetic structures of manganite Pr0.7Ba0.3MnO3 have been studied at high pressures of up to 5.1 GPa and temperatures from 10 to 300 K by means of the neutron diffraction. At normal pressure and a temperature T C = 200 K, a ferromagnetic state forms in Pr0.7Ba0.3MnO3. At high pressures P ≥ 1.9 GPa and T < T N ≈ 153 K, a new antiferromagnetic state of A-type have been observed. Under high pressure, the Curie temperature T C increases with the characteristic quantity dT C/dP ≈ 2.4 K/GPa. A possible reason for the appearance of an A-type antiferromagnetic phase in Pr0.7Ba0.3MnO3 at high pressures may be anisotropic uniaxial compression of oxygen octahedra along the b axis of the orthorhombic structure.  相似文献   

3.
The crystal and magnetic structure and the Raman spectra in Pr0.7Ba0.3MnO3 manganite have been studied by the neutron diffraction technique at pressures up to 5 GPa as well as by the X-ray diffraction and Raman spectroscopy at pressures up to 30 GPa. The pressure dependence is determined for the lattice parameters, unit cell volume, Mn-O bond lengths in the orthorhombic structure of the Imma symmetry, and bending and stretching vibration modes for oxygen octahedra. In the low-temperature range at pressure P = 1.9 GPa, the magnetic transition from the initial ferromagnetic (FM) ground state (T C = 197 K) to the A-type antiferromagnetic (AFM) state (T N = 153 K) has been revealed. The FM and AFM phases coexist at pressures up to 5.1 GPa and exhibit negative and positive values of the pressure coefficient for the Curie and Néel temperature, respectively (dT C/dP = −2.3 K/GPa and dT N/dP = 8 K/GPa). The pressure dependence of the Curie temperature in Pr0.7Ba0.3MnO3 differs drastically from that observed in other manganites of nearly the same composition with the orthorhombic Pnma and rhombohedral R[`3]cR\bar 3c structures, where the FM phase is characterized by the positive values of dT C/dP. The structural mechanisms of these phenomena are discussed.  相似文献   

4.
Magnetization isotherms of the Fe64Ni36 Invar alloy have been measured under pressure up to 5.3?GPa in magnetic field up to 5?T using a diamond anvil cell and SQUID magnetometer. The unambiguous change of the pressure parameter dlnMS/dP (from ?9 to ?13×10?2?GPa?1) has been observed in a narrow pressure interval from 2.5 to 3.5?GPa at all temperatures in the range from 5 to 300?K. The pressure interval, where the sharp decrease in magnetization was observed, coincides with the critical pressures of the pressure-induced decrease in Fe-moment that were determined by the X-ray Magnetic Circular Dichroism and the X-ray Emission Spectra studies, recently. The pronounced decrease in the Curie temperature of the Fe64Ni36 alloy under pressure, dTC/dP = ?44 ±2?K/GPa, has been confirmed.  相似文献   

5.
The effective Debye temperatures Θeff determined for solids by different physical methods have been analyzed and compared. Attention has been focused on the original parameter of the Debye theory of heat capacity, i.e., the translational calorimetric Debye temperature Θ c t (0), and the X-ray Debye temperature Θ x in the framework of the Debye-Waller theory for the C60 fullerite. It has been established that the true Debye law T 3 is satisfied for the C60 fullerite over a very narrow range of temperatures: 0.4 K ≤ T ≤ 1.8 K. For this reason, the experimental Debye temperatures Θ c t (0) obtained for the C60 fullerite by different authors in the range T > 4.2 K are characterized by a large scatter (by a factor of ∼5). It has been revealed that the value Θ c t (0) = 77.12 K calculated in this paper with the use of the six-term Betts formula from the harmonic elastic constants $ \tilde C_{ijkl} $ \tilde C_{ijkl} of the C60 single crystal in the limit T = 0 K is closest to the true Debye temperature. It has been demonstrated using the method of equivalent moments that the real spectral frequency distribution of translational lattice vibrations g(ω) for the C60 fullerite deviates from a parabolic distribution. The effective Debye temperatures Θeff involved in applied problems of thermodynamics of crystals and elastic scattering of different radiations from lattice vibrations have been determined. The quantitative measure of anharmonicity of translational and librational lattice vibrations of the C60 fullerite has been determined. This has made it possible to empirically evaluate the lattice thermal conductivity κ of the C60 fullerite at T ≈ 300 K: κ(300) = 0.80 W (m/K), which is in good agreement with the experimental thermal conductivity κexp = 0.78 W (m/K) at T ≈ 250 K.  相似文献   

6.
Pressure effects on magnetic properties of two La0.7Ca0.3MnO3 nanoparticle samples with different mean particle sizes were investigated. Both the samples were prepared by the glycine-nitrate method: sample S—as-prepared (10 nm), and sample S900—subsequently annealed at 900 °C for 2 h (50 nm). Magnetization measurements revealed remarkable differences in magnetic properties with the applied pressure up to 0.75 GPa: (i) for S sample, both transition temperatures, para-to-ferromagnetic T C = 120 K and spin-glass-like transition T f = 102 K, decrease with the pressure with the respective pressure coefficients dT C/dP = −2.9 K/GPa and dT f/dP = −4.4 K/GPa; (ii) for S900 sample, para-to-ferromagnetic transition temperature T C = 261 K increases with pressure with the pressure coefficient dT C/dP = 14.8 K/GPa. At the same time, saturation magnetization M S recorded at 10 K decreases/increases with pressure for S/S900 sample, respectively. Explanation of these unusual pressure effects on the magnetism of sample S is proposed within the scenario of the combined contributions of two types of disorders present in the system: surface disorder introduced by the particle shell, and structural disorder of the particle core caused by the prominent Jahn–Teller distortion. Both disorders tend to vanish with the annealing of the system (i.e., with the nanoparticle growth), and so the behavior of the sample S900 is similar to that previously observed for the bulk counterpart.  相似文献   

7.
The locations of the 000 0_0^0 -bands for S1← S0 and S1 → S0 transitions have been found for C60 solutions in hexane. It is shown that the profile of the S1 ← S0 band is mainly shaped by hu(4), t1u(4)- and hg(1), ag(2)- modes that are active in absorption. Bands involving the hu(4)- and t1u(4)-modes in the emission process have also been identified in the fluorescence spectrum. The appearance of the 000 0_0^0 -band in the forbidden 11T1g ← 11Ag transition is explained by symmetry reduction in the C60+environment system due to the interaction of electrons with local phonons. The temperature coefficients of the red shift for the 256.3- and 328.3-nm bands of allowed 1T1u ← 11Ag transitions for C60 in hexane are equal to –1.45 and –0.46 cm–1·K–1, respectively. The peak and half-width values of the 337.2-nm band for C60 in polystyrene remain unchanged on cooling to 77 K. Absorption in the 700–800-nm region for concentrated hexane solutions of fullerene at 292 K results from the production of (C60)n-clusters.  相似文献   

8.
The magnetic and thermal properties of the anion-deficient La0.70Sr0.30MnO2.85 manganite are investigated in wide temperature (4–350 K) range, including under hydrostatic pressure (0–1.1 GPa). Throughout the pressure range investigated, the sample is spin glass with diffused phase transition into paramagnetic state. It is established, that spin glass state is a consequence of exchange interaction frustration of the ferromagnetic clusters embeded into antiferromagnetic clusters. The magnetic moment freezing temperature T f of ferromagnetic clusters increases under pressure, freezing temperature dependence on pressure is characterized by derivative value ∼4.5 K/GPa, while the magnetic ordering T MO temperature dependence is characterized by derivative value ∼13 K/GPa. The volume fraction of sample having ferromagnetic state is V fer ∼ 13% and it increases under a pressure of 1.1 GPa by ΔV fer ≈ 6%. Intensification of ferromagnetic properties of the anion-deficient La0.70Sr0.30MnO2.85 manganite under hydrostatic pressure is a consequence of oxygen vacancies redistribution and unit cell parameters decrease. The most likely mechanism of frustrated exchange interactions formation is discussed.  相似文献   

9.
The effect of temperature and pressure on heat conductivity of ternary compounds TiSbC 2VI (C VI → S, Se, Te) in the solid and liquid states in a temperature range of 300–800 K, as well as under the pressure up to 0.35 GPa in a temperature range of 275–450 K, is studied. The dependence of heat conductivity on average atomic weight under the S → Se → Te transition is found. Analysis of the experimental data makes it possible to attribute TlSbS2 to the class of substances exhibiting semiconductor-semiconductor melting behavior.  相似文献   

10.
The compound CaCo2 with the C15 cubic Laves phase structure and an estimated density of 5.21 g/cm3 has been synthesized at 8.0 GPa pressure. Magnetization measurements showed that the compound CaCo2 is a ferromagnet with Curie temperature 528 K and magnetic moment per Co atom 1.75 μB at T=4.2 K. LMTO calculations of the electronic band structure showed that CaCo2 forms as a result of an s-d electronic transition of Ca and in the ground state it is a ferromagnet with a high magnetic moment per Co atom. Pis'ma Zh. éksp. Teor. Fiz. 68, No. 12, 864–869 (25 December 1998)  相似文献   

11.
We investigate the external hydrostatic pressure effect on the superconducting transition temperature (Tc) of new layered superconductors Bi4O4S3 and NdO0.5F0.5BiS2. Though the Tc is found to have a moderate decrease from 4.8 K to 4.3 K (dTconset/dP = –0.28 K/GPa) for Bi4O4S3 superconductor, the same increases from 4.6 K to 5 K (dTconset/dP = 0.44 K/GPa) up to 1.31 GPa followed by a sudden decrease from 5 K to 4.7 K up to 1.75 GPa for NdO0.5F0.5BiS2 superconductor. The variation of Tc in these systems may be correlated to an increase or decrease of the charge carriers in the density of states under externally applied pressure. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The crystal structure and Raman spectra of Pr0.7Ca0.3MnO3 manganite at high pressures of up to 30 GPa and the magnetic structure at pressures of up to 1 GPa have been studied. A structural phase transition from the orthorhombic phase of the Pnma symmetry to the high-pressure orthorhombic phase of the Imma symmetry has been observed at P ∼ 15 GPa and room temperature. Anomalies of the pressure dependences of the bending and stretching vibrational modes have been observed in the region of the phase transition. A magnetic phase transition from the initial ferromagnetic ground state (T C = 120 K) to the A-type antiferromagnetic state (T N = 140 K) takes place at a relatively low pressure of P = 1 GPa in the low-temperature region. The structural mechanisms of the change of the character of the magnetic ordering have been discussed.  相似文献   

13.
The crystal and magnetic structure of the Nd0.78Ba0.22CoO3 cobaltite is studied by neutron diffraction at high pressures up to 4.2 GPa in the temperature range 10–300 K. The pressure dependences of structural parameters are obtained. Ferromagnetic ordering of the Co sublattice is observed at normal pressure below T C ~ 140 K, and ferrimagnetic ordering of the Co and Nd sublattices with an antiparallel direction of magnetic moments appears at T F ~ 40 K. The magnetic moment of Co and the temperature T C change slightly under pressure, which points to the stability of the initial intermediate-spin (S = 1) state of Co3+ ions. This behavior differs considerably from the characteristic behavior of cobaltites that are close in chemical composition and structure and exhibit ferromagnetic ordering of only the Co sublattice. In these cobaltites, the magnetic moment of Co is substantially suppressed and T C decreases under pressure, which is related to the change in the state of Co3+ ions from the intermediate spin state to the nonmagnetic low-spin state (S = 0). The interplay between the appearance of the magnetic interaction of the R-Co sublattices and the stability of the spin state of Co3+ ions in the Nd0.78Ba0.22CoO3 cobaltite is discussed.  相似文献   

14.
The magnetic properties of a Fe2P-type intermetallic compound MnRhAs have been investigated under high pressure up to 8.0 GPa by AC susceptibility measurement. Initially, both the antiferromagnetic (AF(I)) to the canted state magnetic transition temperature Tt and the canted state to another antiferromagnetic one (AF(II)) transition temperature TC increase with compression. At 4.0 GPa, however, Tt decreases abruptly, while the increasing rate of TC becomes larger above this pressure. A pressure-induced magnetic phase transition was seen at around this pressure when Tt and TC are plotted in the pressure–temperature phase diagram. The transition from the antiferromagnetic to the ferromagnetic state observed below 160 K with increasing pressure is not frequently observed.  相似文献   

15.
The structural (at T = 300 K) and magnetic properties of LaMnO3 + δ nanoceramic materials prepared by shock-wave loading have been investigated in the paramagnetic region. The samples contain a mixture of the orthorhombic and rhombohedral phases in different ratios. The Curie-Weiss law is satisfied in the temperature range T > 440 K > 2T C, and magnetic polarons are generated in the vicinity of defects at temperatures in the range 300 K < T < 440 K. An increase in the concentration of Mn4+ ions leads to a decrease in the Curie temperature T C due to the decrease in the total number of Mn ions, the size effects of small particles, and the long-range elastic stresses.  相似文献   

16.
The magnetic susceptibility χ/χ0 and the longitudinal Δρ zz 0 and transverse Δρ xx 0 magnetoresistances have been measured as functions of the hydrostatic pressure P ≤ 7 GPa at room temperature in the high-temperature ferromagnetic semiconductor Cd0.7Mn0.3GeAs2 with a chalcopyrite structure and the Curie temperature T c = 355 K. A pressure-induced metamagnetic transition from the low-magnetization state to the high-magnetization state has been observed in Cd0.7Mn0.3GeAs2 near the magnetic ordering temperature. This transition is accompanied by the hysteresis of the magnetic susceptibility and magnetoresistance.  相似文献   

17.
The current voltage characteristics ofo-tolidine-iodine, with stoichiometry 1:1 grown from benzene, have been studied under high pressures upto 6 GPa atT=300 K andT=77 K. The characteristics show a pronounced deviation from ohmicity beyond a certain current for all pressures studied. At room temperature, beyond a threshold field the system switches from a low conductingOFF state to a high conductingON state with σONOFF ∼ 103. TheOFF state can be restored by the application of an a.c. pulse of low frequency. The temperature dependence of the two states studied indicates that theOFF state is semiconducting while theON state, beyond a certain applied pressure is metallic. The characteristics atT=77 K do not show any switching.  相似文献   

18.
The pressure dependence of the superconducting transition temperature in TiD0.74 has been measured up to 30 GPa in a diamond high-pressure chamber. It is found that the deuteride TiD0.74 becomes a superconductor at pressures corresponding to the transition to the high-pressure ζ phase, with a transition temperature that increases from 4.17 to 4.43 K in the interval P=14–30 GPa. The value extrapolated to atmospheric pressure T c (0)=4.0 K is significantly lower than the superconducting transition temperature (T c =5.0 K) measured earlier in the metastable state obtained by quenching TiD0.74 under pressure. It is assumed that the significant difference of the extrapolated value from the superconducting transition temperature in the metastable state after quenching under pressure is caused by a phase transition on the path from the stability region of the ζ phase under pressure to the region of the metastable state at atmospheric pressure. Fiz. Tverd. Tela (St. Petersburg) 40, 2153–2155 (December 1998)  相似文献   

19.
The crystal structure of lead titanate PbTiO3 was investigated by energy dispersive X-ray diffraction at high pressures up to 4 GPa in a temperature range of 300–950 K. At the ambient conditions, the PbTiO3 structure is tetragonal with the space group P4mm (ferroelectric phase). A structural phase transition into the cubic phase with a space group Pm[`3]mPm\bar 3m is observed at T = 747 K. It was found that the phase transition temperature decreases upon applying the high pressure with the coefficient dT C /dP = -65 K/GPa. Dependences of parameters and volume of the unit cell on the pressure and temperature was found, and the bulk modulus and thermal expansion coefficients for the tetragonal and cubic phases of lead titanate have been calculated.  相似文献   

20.
The temperature (T = 77–420 K) dependences of the electrical resistivity and the magnetization, the magnetic-field (H ≤ 5 kOe) and pressure (P ≤ 7 GPa) dependences of the resistivity, the Hall coefficient, and the magnetization have been measured in the Zn0.1Cd0.9GeAs2 + 10 wt % MnAs composite with the Curie temperature T C = 310 K. The magnetoresistive effect has been observed at high hydrostatic pressure to 7 GPa. At nearly room temperature, the pressure dependence of the magnetization demonstrated a transition from the ferromagnetic to paramagnetic state at P ~ 3.2 GPa that was accompanied by the semiconductor–metal phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号