首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of competitive metal ion transport experiments have been performed. Each involved transport from an aqueous source phase across an organic membrane phase into an aqueous receiving phase. The source phase contained equimolar concentrations of cobalt(II), nickel(II), cupper(II), zinc(II), cadmium(II), silver(I) and lead(II) metal cations. The membrane phase incorporated ionophore, decyl-18-crown-6. The membrane solvents include: chloroform, dichloromethane, 1,2-dichloroethane, nitrobenzene and chloroform–nitrobenzene binary solvents. A good transport efficiency and selectivity of Pb2+ transport from aqueous solutions are observed in this investigation. The selectivity order for competitive bulk liquid membrane transport of the studied transition and post transition metal cations through chloroform is: Pb2+>Co2+>Ni2+>Ag+>Cd2+, but in the case of dichloromethane, 1,2-dichloroethane and nitrobenzene as liquid membranes, the selectivity sequences were found to be: Pb2+>Co2+>Cd2+>Cu2+>Ag+>Ni2+>Zn2+, Pb2+>Co2+>Ag+>Ni2+>Zn2+ and Pb2+>Co2+>Ni2+>Zn2+>Cd2+>Ag+, respectively. The transport rate of the metal cations in chloroform–nitrobenzene binary solvents is sensitive to the solvent composition. The transport processes were studied in absence and presence of the stearic acid and the results show that the sequence of selectivities and ion transport rates change in the presence of stearic acid.  相似文献   

2.
A chloroform membrane system containing a given mixture of dibenzyldiaza‐18‐crown‐6 and palmetic acid was applied for transport of Pb2+ ions. The transport was capable of moving metal ions “uphill”. Thus, it was possible to follow the transfer of Pb(II) from the aqueous source phase to the organic layer and from the organic layer to the receiving phase. The effects of thiosulfate concentration in the receiving phase, palmetic acid and dibenzyldiaza‐18‐crown‐6 concentration in the organic phase on the efficiency of the transport system were examined. By using S2O32? ion as metal ion acceptor in the receiving phase, the amount of lead ion transport across the liquid membrane after 150 minutes is 96 ± 1.5%. The selectivity and efficiency of lead transport from aqueous solution containing Cu2+, Tl+, Ag+, Co2+, Ni2+, Mg2+, Zn2+, Hg2+, Cd2+, Ca2+ were investigated. In the presence of thiosulfate as a suitable masking agent in the source phase, the interfering effects of Ag+ and Cu2+ were diminished drastically.  相似文献   

3.
A chloroform membrane system containing dibenzodiaza‐15‐crown‐4 was found to be a highly efficient and selective transport of Ag+ ions through a chloroform liquid membrane. In the presence of thiosulfate ion as a suitable ion stripping agent in the receiving phase, the amount of silver transported across the liquid membrane after 105 minis 95 ± 1.3%. The selectivity of Ag+transport from aqueous solutions containing Tl+, Pb2+, Cd2+, Ni2+, Co2+, K+, Ca2+, Sr2+, Hg2+, Zn2+, Cu2+was investigated. The interfering effect of Cu2+ ions was drastically diminished in the presence of EDTA as a proper masking agent in the source phase.  相似文献   

4.
《Electroanalysis》2017,29(7):1712-1720
[14]Tetraazaannulene derivatives 1–4 with various substituents were synthesized as ion recognition compounds. All solvent polymeric membrane electrodes incorporating [14]tetraazaannulene derivatives 1–4 showed rapid response for the Cu2+ ion and exhibited excellent selectivity over other mono‐ and divalent cations such as Ag+ and Ni2+ ions. The solvent polymeric membrane electrode based on [14]tetraazaannulene derivative 1 has a linear response to the Cu2+ ion from 5.01 × 10−7 – 2.63 × 10−4 M with a slope of 29.56 mV per decade. DFT calculations showed that the selectivities for the Cu2+ ion of the ISEs based on [14]tetraazaannulene derivatives 1–4 depended on both their topological and electrostatic properties caused by the introduced substituents.  相似文献   

5.
Facilitated transport of silver ion across a supported liquid membrane (SLM) by calix[4]pyrroles, as selective ion carriers, dissolved in kerosene has been investigated. The influences of fundamental parameters affecting the transport of silver ion including ion carrier concentration in the membrane phase, thiosulfate concentration in strip phase, picric acid concentration in the feed phase, stirring speed of aqueous phases, type of membrane solvent and time of transport have been studied. In the presence of thiosulfate as a suitable metal ion acceptor in the strip phase and picrate ion as ion pairing agent in the source phase, transport of silver occurs almost quantitatively after 75 min. The selectivity and efficiency of silver transport from aqueous solution containing Cu2+, Mg2+, Ni2+, Ca2+, Zn2+, Pb2+, Co2+, Al3+, Hg2+, Cd2+, Fe3+, Fe2+ and Cr3+ were investigated.  相似文献   

6.
Extraction of lithium ions from salt‐lake brines is very important to produce lithium compounds. Herein, we report a new approach to construct polystyrene sulfonate (PSS) threaded HKUST‐1 metal–organic framework (MOF) membranes through an in situ confinement conversion process. The resulting membrane PSS@HKUST‐1‐6.7, with unique anchored three‐dimensional sulfonate networks, shows a very high Li+ conductivity of 5.53×10?4 S cm?1 at 25 °C, 1.89×10?3 S cm?1 at 70 °C, and Li+ flux of 6.75 mol m?2 h?1, which are five orders higher than that of the pristine HKUST‐1 membrane. Attributed to the different size sieving effects and the affinity differences of the Li+, Na+, K+, and Mg2+ ions to the sulfonate groups, the PSS@HKUST‐1‐6.7 membrane exhibits ideal selectivities of 78, 99, and 10296 for Li+/Na+, Li+/K+, Li+/Mg2+ and real binary ion selectivities of 35, 67, and 1815, respectively, the highest ever reported among ionic conductors and Li+ extraction membranes.  相似文献   

7.
We report the synthesis and analytical application of the first Cu2+‐selective synthetic ion channel based on peptide‐modified gold nanopores. A Cu2+‐binding peptide motif (Gly‐Gly‐His) along with two additional functional thiol derivatives inferring cation‐permselectivity and hydrophobicity was self‐assembled on the surface of gold nanoporous membranes comprising of about 5 nm diameter pores. These membranes were used to construct ion‐selective electrodes (ISEs) with extraordinary Cu2+ selectivities, approaching six orders of magnitude over certain ions. Since all constituents are immobilized to a supporting nanoporous membrane, their leaching, that is a ubiquitous problem of conventional ionophore‐based ISEs was effectively suppressed.  相似文献   

8.
A solution of 2-(octylsulphanyl)benzoic acid in 1,2-dichloroethane was used as a liquid membrane for selective pertraction of Pb2+ cations. Transport processes were carried out in a multi-membrane hybrid system (MHS) consisting of two cation-exchange membranes (CEM) and a flowing liquid membrane (FLM) in the following order: CEM | FLM | CEM. The liquid membrane phase was dehydrated continuously using a pervaporation method (PV). The system was capable of transporting Pb2+ ions selectively from a multi-cation aqueous solution composed of Na+, K+, Ca2+, Mg2+, and Pb2+ nitrates. A comparative study of the carrier efficiency under various feed pH conditions was performed. It was found that the carrier exhibited sufficient selectivity and transport efficiency under a broad range of operational conditions, with a maximum transport rate of Pb2+ ions attaining the value of (1.09 ± 0.03) × 10−10 mol cm−2 s−1 and the selectivity coefficient of up to 40.  相似文献   

9.
《Analytical letters》2012,45(15):2591-2605
Abstract

A new PVC membrane electrode for lead ions, based on bis[(1-hydroxy-9,10-anthraquinone)-2-methyl]sulfide as membrane carrier, was prepared. The sensor exhibits a Nernstian response for Pb2+ over a wide concentration range (5.6 × 10?3-4.0 × 10?6 M). It has a response time of about 30 s and can be used for at least 3 months without any divergence in potentials. The proposed membrane sensor revealed good selectivities for Pb2+ over a wide variety of other metal ions. It was used as an indicator electrode in potentiometric titration of lead ion.  相似文献   

10.
《Analytical letters》2012,45(15):3139-3152
ABSTRACT

A PVC membrane sensor for Nickel (II) ions based on 2,5-thiophenyl bis(5-tert-butyl-1,3-benzoxazole) as membrane carrier was prepared. The sensor exhibits a Nernstian response for Ni2+ ions over a wide concentration range (10?2–10?5M). It has a relatively fast response time and can be used for at least 2 months without any considerable divergence in potentials. The nature of the plasticizer, the additive, the concentration of internal solutions in the electrodes and the composition of the membrane were investigated. The proposed membrane electrode revealed very good selectivities for Ni2+ over a wide variety of other metal cations and could be used in pH range of 4.0–8.0. It was successfully applied for the direct determination of Ni2+ in solution and as an indicator electrode in potentiometric titration of nickel ion in both water and 85% acetonitrile solutions.  相似文献   

11.
Sodium-dicyclohexyl- 18-crown-6 complex cation was used as carrier for the uphill transport of zinc as Zn(SCN)42? complex anion. By using L-cysteine as a metal ion acceptor in the receiving phase at the optimized pH of 7.6, the amount of zinc transport through the liquid membrane after 90 min was 97.2 ± 1.0%. The selectivity and efficiency of zinc transport from aqueous solutions containing equimolar mixtures of Ag+, Cd2+ Co2+, Cu2+, Fe2+, Ni2+, Pb2+, Pd2+, Sr2+, Bi3+, Cr3+ and Fe3+ ions was investigated. In the presence of NH2OH.HCl as a suitable masking agent in the source phase, the interfering effect of Cu2+ and Pb2+ ions was diminished drastically.  相似文献   

12.
Competitive transport experiments involving Fe+3, Cr+3, Ni+2, Co+2, Ca+2, Mg+2 and K+ metal cations from an aqueous source phase through some organic membranes into an aqueous receiving phase have been carried out using 4,13-diaza-18-crown-6 (kryptofix 22) as an ionophore present in the organic membrane phase. Fluxes and selectivities for competitive of the metal cations transport across bulk liquid membranes have been determined. A good selectivity was observed for K+ cation by kryptofix 22 in 1,2-dichloroethane (1,2-DCE) membrane system. The sequence of selectivity for potassium ion in the organic solvents was found to be: 1,2-DCE > DCM (dichloromethane) >CHCl3. The transport of K+ cation was also studied in the DCM-1,2-DCE, CHCl3-1,2-DCE and CHCl3-DCM binary mixed solvents as membrane phase. A non-linear relationship was observed between the transport rate of K+ ion and the composition of these binary mixed solvents. The amount of K+ transported follows the trend: DCM-DCE > CHCl3-DCE > CHCl3-DCM in the bulk liquid membrane studies. Then, the selective transport of K+ cation through a DCM-1,2-DCE bulk liquid membrane was studied by kryptofix 22 as an efficient carrier. The highest transport efficiency was obtained by investigating the influence of different parameters such as the concentration of kryptofix 22 in the membrane phase, pH of the source and the receiving phases and the equilibrium time of the transport process. Maximum transport value of 71.62 ± 1.61% was observed for K+ ion after 4 hours, when its concentration was 4 × 10–3 M.  相似文献   

13.
This work highlights the role of synthetic carrier (ionophore) in the separation of heavy metal ions. A new series of ionophores; 4,4′-nitrophenyl-azo-O,O′-phenyl-3,6,9-trioxaundecane-1,10-dioate (R1), bis[4,4′nitro-phenylazo-naphthyl-(2,2-dioxydiethylether)] (R2) 1,8-bis-(2-naphthyloxy)-3,6-dioxaoctane (R3), 1,11-bis-(2-naphthyloxy)-3,6,9-trioxaunde-cane (R4), 1,5-bis-(2-naphthyloxy)-3-oxa-pentane (R5) have been synthesized and used as extractant as well as carrier for the transport of various metal ions (Na+, K+, Mg2+, Ni2+, Cu2+ and Zn2+) through liquid membranes. Effect of various parameters such as metal ion concentration, ionophore concentration, liquid–liquid extraction, back extraction, comparison of transport efficiency of BLM and SLM and different membrane support (hen’s egg shell and PTFE) have been studied. In BLM ionophores (R2–R5) transport Zn+ at greater extent and the observed trend for the transport of Zn2+ is R2?>?R4?>?R3?>?R5 respectively. Further transport efficiency is increased in SLM. In egg shell membrane ionophores (R2–R5) transport Zn+ due to their non-cyclic structure and pseudo cavity formation while ionophore R1 transports Cu2+ ions at greater extent due to its cyclic structure and cavity size. Among the membrane support used egg shell membrane is found best for the transport of zinc ions because of its hydrophobic nature and exhibits electrostatic interactions between positively charged zinc ions and –COOH group of egg shell membrane. Thus structure of ionophores, hydrophobicity and porosity of the membrane support plays important role in separation of metal ions.  相似文献   

14.
Novel PVC membrane (PME) and coated graphite (CGE) Cu2+‐selective electrodes based on 5,6,7,8,9,10‐hexahydro‐2H‐1,13,4,7,10‐benzodioxatriazacyclopentadecine‐3,11(4H,12H)‐dione are prepared. The electrodes reveal a Nernstian behavior over wide Cu2+ ion concentration ranges (1.0×10?7–1.0×10?1 M for PME and 1.0×10?8–1.0×10?1 M for CGE) with very low limits of detection (7.8×10?8 M for PME and 9.1×10?9 M for CGE). The potentiometric responses are independent of the pH of the test solutions in the pH range 2.7–6.2. The proposed electrodes possess very good selectivities for Cu2+ over a wide variety of the cations including alkali, alkaline earth, transitions and heavy metal ions. The practical utility of the proposed electrodes have been demonstrated by their use in the study of interactions between copper ions and human growth hormone (hGH) in biological systems, potentiometric titration of copper with EDTA and determination of copper content of a sheep blood serum sample and some other real samples.  相似文献   

15.
The facilitated transport of Au(III) from cyanide solutions through a bulk liquid membrane is reported. The organic phase consisted of a chloroform solution containing Victoria blue dye as the Au(CN)4 carrier. The effects of pH of source phase, potassium cyanide concentration in source phase, Victoria blue concentration in the organic phase and sodium hydroxide in the receiving phase on the efficiency of transport process were examined. Under optimum conditions the extent of Au(CN)4 transport across the liquid membrane was about 97% after 180 min. The carrier can selectively and efficiently transport Au(CN)4 ion from the aqueous solutions containing other cations such as alkali and alkaline earth, Zn2+, Pb2+, Cu2+, Cd2+, Hg2+, Ag+, Co2+, Fe2+, Pt2+, Pd2+ and Ni2+.  相似文献   

16.
《Electroanalysis》2005,17(4):327-333
Conducting polymers (CP) remain a promising material to construct stable potential all‐solid‐state ion‐selective potentiometric electrodes. The unique properties of poly(3,4‐ethylenedioxythiophene) doped with poly(4‐styrenesulfonate) ions, PEDOT‐PSS: high CP stability and affinity of doping anions towards Cu2+ ions, make it highly attractive for construction of all‐solid‐state copper(II)‐selective electrodes with outstanding selectivity. The additional benefits can arise from solution processability of commercially available PEDOT‐PSS system. This material was highly promising for a new sensor arrangement, i.e. to obtain disposable, planar and flexible all‐plastic Cu2+‐selective electrodes. These sensors can be obtained by casting a commercially available dispersion of PEDOT‐PSS (Baytron P) on a plastic, non‐conducting support material. The CP being both electrical lead and ion‐to‐electron transducer, was covered with plastic, solvent polymeric Cu2+ selective membrane. This extremely simple arrangement, after conditioning in dilute Cu2+ solution, was characterized with linear Nernstian responses within the activities range from: 0.1 to 10?4 M, followed by super‐Nernstian responses for lower activities. The latter result points to effective elimination of primary ions leakage from the plastic membrane / transducer phase and has resulted in significantly improved selectivities. Obtained log K values were equal to ?7.6 for Co2+, ?7.4 for Zn2+, ?7.2 for Ca2+ and ?6.8 for Na+, respectively.  相似文献   

17.
The Tb3+ transport in dispersion supported liquid membrane (DSLM) consisting of polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and dispersion solution including HCl solution as the stripping solution and 2‐ethyl hexyl phosphonic acid‐mono‐2‐ethyl hexyl ester (P507) dissolved in kerosene as the membrane solution, has been studied. The effects of pH value, initial concentration of Tb3+ and different ionic strength in the feed phase, volume ratio of membrane solution and stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on transport of Tb3+ has also been investigated, respectively. As a result, the optimum transport conditon of Tb3+ was that concentration of HCl solution was 4.0 mol/L, concentration of P507 was 0.10 mol/L, and volume ratio of membrane solution and stripping solution was 1.0 in the dispersion phase, and pH value was 5.2 in the feed phase. Ionic strength had no obvious effect on transport of Tb3+. Under the optimum condition studied, when initial concentration of Tb3+ was 1.0×10?4 mol/L, the transport rate of Tb3+ was up to 95.2% during the transport time of 95 min. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The results were in good agreement with the literature data.  相似文献   

18.
A highly selective PVC‐membrane electrode based on 2,6‐diphenylpyrylium fluoroborate is presented. The electrode reveals a Nernstian potentiometric response for sulfate ion over a wide concentration range (5.0 × 10?6‐1.0 × 10?1 M). The electrode has a response time of about 10 s and can be used for at least 2 months without any divergence. The proposed sensor revealed very good selectivities for sulfate over a wide variety of common organic and inorganic anions and could be used over a wide pH range (2.5–9.5). The detection limit of the sensor is 3.0 × 10?6 M. It was successfully applied to the direct determination of salbutamol, paramomycin tablets, and as an indicator electrode for potentiometric titration of sulfate ions with barium ions.  相似文献   

19.
《Analytical letters》2012,45(13):2269-2279
Abstract

A lead ion-selective electrode based on dibenzopyridino-18-crown-6 as membrane carrier was successfully prepared. The electrode exhibits a Nernstian response for Pb2+ ions over a wide concentration range. Influences of the nature of plasticizer, the concentrations of internal solutions in the electrodes and the composition of the membrane were investigated. The lead ion-selective electrode exhibited comparatively good selectivities with respect to alkali, alkaline earth and some transition and heavy metal ions.  相似文献   

20.
Activated composite membranes (ACMs) containing di-(2-ethylhexyl) dithiophosphoric acid (D2EHDTPA) as a carrier have been found to facilitate the transport and separation of several cations. This paper describes an approach to the chemical characterisation of the transport phenomena of Zn2+, Cd2+, Cu2+, Ni2+, Sn2+ and In3+ by an ACM. The selectivity of D2EHDTPA based ACM towards different metal ions is presented and discussed focusing in Zn2+ and Cd2+ transport and recovery. Selectivity demonstrates that zinc ions are removable from mixtures due to the different extraction strength of D2EHDTPA. Such selectivity is based on the differences of the dynamic behaviour of the metal ions transport. In addition, a correlation of the chemical behaviour of those ACM systems with the corresponding solvent extraction systems has been found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号