首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CeO2 nanoparticles approximately 12 nm in size were synthesized and subsequently characterized by XRD, TEM and UV-vis spectroscopy. Then, a gold electrode modified with CeO2 nanoparticles was constructed and characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The modified electrode demonstrated strong catalytic effects with high stability towards electrochemical oxidation of rutin. The anodic peak currents (measured by differential pulse voltammetry) increased linearly with the concentration of rutin in the range of 5.0 × 10−7–5.0 × 10−4 mol · L−1. The detection limit (S/N = 3) was 2.0 × 10−7 mol · L−1. The relative standard deviation (RSD) of 8 successive scans was 3.7% for 5.0 × 10−6 mol · L−1 rutin. The method showed excellent sensitivity and stability, and the determination of rutin in tablets was satisfactory.  相似文献   

2.
This paper described the determination of p-nitroaniline in a double organic substrate oscillating system of tartrate-acetone-Mn2+-KBrO3-H2SO4. Under the optimum conditions, temperature was chosen as a control parameter to design the bifurcation point and proposed a convenient method for determination of p-nitroaniline. Results showed that the system consisting of 3.5 mL 0.06 mol L−1 tartrate, 4.0 mL 0.7 mol L−1 H2SO4, 1.5 mL 1.5×10−4 mol L−1 MnSO4, 4.0 mL 0.4 mol L−1 acetone and 7.0 mL 0.05 mol L−1 KBrO3 was very sensitive to the surrounding at 33.5°C. A good linear relationship between the potential difference and the negative logarithm concentration of p-nitroaniline was obtained to be in the range of 2.50×10−7∼3.75×10−5 mol L−1 with a lower detection limit of 2.50×10−8 mol L−1.   相似文献   

3.
A convenient and sensitive method for determination of sulfanilamide (SNA) was described based on the Mn(II)-catalyzed oscillating chemical reaction. Under optimum conditions, a linear relationship existed between the changes of oscillating period or amplitude and the negative of logarithm of SNA concentration in the range of 4.27 × 10−8 mol ·L−1 ∼ 7.41 × 10−6 mol ·L−1 (RSD, 0.85%) and 9.33 × 10−8 mol ·L−1 ∼ 3.02 × 10−6 mol ·L1 (RSD, 1.08%), respectively. The lower limit of detection was found to be 2.69 × 10−8 mol ·L−1 and 6.03 × 10−8 mol ·L−1, respectively.   相似文献   

4.
A novel flow injection procedure has been developed for the determination of tannic acid based on the inhibition of the chemiluminescences in luminol-H2O2-Manganese tetrasulfonatophthalocyanine (MnTSPc) system by tannic acid. The method is simple, rapid and sensitive with a detection limit of 8 × 10−10 mol·L−1 and a linear range of 7 × 10−9–5 × 10−6 mol·L−1. The relative standard deviation is 1.9% for eleven measurements of 5 × 10−7 mol·L−1 tannic acid. The method has been successfully applied to the determination of tannic acid in real Chinese gall and hop pellets samples.  相似文献   

5.
A new Schiff-base ligand [N, N′, N″-Tri- (2,4-dihydroxyacetophenone) – triaminotriethylamine (TDATA)] with a tripodal structure was synthesized. Its fluorescence intensity with the europium(III) complex was increased about 178-fold in the presence of sodium acetate (NaAc) and about 126-fold in the presence of sodium phosphate (Na3PO4) solution. After adding the organic solvent dimethylsulfoxide (DMSO) to the above system, which leads to Eu3+ the fluorescence was further enhanced about 12-fold. Spectrofluorimetric determination of trace amounts of Eu3+ based on the phenomenon was performed. The excitation and emission wavelength is 365 nm and 615 nm, respectively. Under optimum conditions, the fluorescence intensities vary linearly with the concentration of Eu3+ in the range of 4.9 × 10−12–3.2 × 10−6 mol · L−1 with a detection limit of 4.5 × 10−12 mol · L−1 (for the TDATA-NaAc-DMSO system) or 6.2 × 10−11–8.6 × 10−6 mol · L−1 with a detection limit of 6.0 × 10−11 mol · L−1 (for the TDATA-Na3PO4-DMSO system). Interferences of some rare earth metals and other inorganic ions are described. The method is a selective, sensitive, rapid and simple analytical procedure for the determination of europium(III) in a high purity yttrium oxide and synthetic sample. The mechanism for the fluorescence enhancement is also discussed.  相似文献   

6.
A method was developed for determining selenium with a self-made ion-selective electrode was developed. This electrode was made by using Ag2Se as electroactive material. Optimal working conditions and interferences were investigated. The electrode exhibits good potentiometric response for Se2− ions over the concentration range from 6 × 10−7 mol · L−1 to 1 × 10−4 mol · L−1 with a Nernstian slope of 28 ± 1 mV per decade and a detection limit of about 4.5 × 10−7 mol · L−1. It was used over six months and exhibits good selectivity and sensitivity towards Se2−. The method was applied to determine selenium in biological materials. The recovery ranges between 92% and 105.5%, and the relative standard derivation is less than 3.6% (n = 6).  相似文献   

7.
A simple, selective and sensitive kinetic method for the determination of nitrite in water was developed. The method is based on the catalytic effect of nitrite on the oxidation of methylene blue (MB) with bromate in a sulfuric acid medium. During the oxidation process, absorbance of the reaction mixture decreases with the increasing time, inversely proportional to the nitrite concentration. The reaction rate was monitored spectrophotometrically at λ = 666 nm within 30 s of mixing. Linear calibration graph was obtained in the range of 0.005–0.5 μg mL−1 with a relative standard deviation of 2.09 % for six measurements at 0.5 μg mL−1. The detection limit was found to be 0.0015 μg mL−1. The effect of different factors such as acidity, time, bromate concentration, MB concentration, ionic strength, and order of reactants additions is reported. Interference of the most common foreign ions was also investigated. The optimum experimental conditions were: 0.38 mol L−1 H2SO4, 5 × 10.4 mol L−1 KBrO3, 1.25 × 10.5 mol L−1 MB, 0.3 mol L−1 sodium nitrate, and 25°C. The proposed method was conveniently applied for the determination of nitrite in spiked drinking water samples.  相似文献   

8.
A sensitive adsorptive anodic stripping procedure for the determination of trace zirconium at a carbon paste electrode (CPE) has been developed. The method is based on adsorptive accumulation of the Zr(IV)-alizarin red S(ARS) complex onto the surface of the CPE, followed by oxidation of adsorbed species. The optimal experimental conditions include the use of 0.10 mol · L−1 ammonium acetate buffer (pH 4.3), ARS, an accumulation potential of 0.20 V (versus SCE), an accumulation time of 2 min, a scan rate of 200 mV · s−1 and a second-order derivative linear scan mode. The oxidation peak for the complex appears at 0.69 V. The peak current is proportional to the concentration of Zr(IV) over the range of 1.0 × 10−9–2.0 × 10−7 mol · L−1, and the detection limit is 3 × 10−10 mol · L−1 for a 2 min adsorption time. The relative standard deviations (n = 8) for 5.0 × 10−8 and 5.0 × 10−9 mol · L−1 Zr(IV) are 3.3 and 4.8%, respectively. The proposed method was applied to the determination of zirconium in ore samples with satisfactory results.  相似文献   

9.
A catalytic adsorptive stripping voltammetric method for the determination of copper(II) on a carbon paste electrode (PCE) in an alizarin red S (ARS)-K2S2O8 system is proposed. In this method, copper(II) is effectively enriched by both the formation and adsorption of a copper(II)-ARS complex on the PCE, and is determined by catalytic stripping voltammetry. The catalytic enhancement of the cathodic stripping current of the Cu(II) in the complex results from a redox cycle consisting of electrochemical reduction of Cu(II) ion in the complex and subsequent chemical oxidation of the Cu(II) reduction product by persulfate, which reduces the contamination of the working electrode from Cu deposition and also improves analytical sensitivity. In Britton-Robinson buffer (pH 4.56±0.1) containing 3.6×10−5 mol L−1 ARS and 1.6×10−3 mol L−1 K2S2O8, with 180 s of accumulation at −0.2 V, the second-order derivative peak current of the catalytic stripping wave was proportional to the copper(II) concentration in the range of 8.0×10−10 to ∼3.0×10−8 mol L−1. The detection limit was 1.6×10−10 mol L−1. The proposed method was evaluated by analyzing copper in water and soil.  相似文献   

10.
A highly sensitive high-performance liquid chromatographic method with fluorescence detection has been developed for determination of vitamin B1. Vitamin B1 was converted into a fluorescent compound by treatment with hydrogen peroxide–horseradish peroxidase and the derivative was subsequently analyzed by HPLC on a Waters Spherisorb ODS2 column (250 mm×4.6 mm ID, 5 μm) with 40:60 methanol–pH 8.5 acetate buffer solution as mobile phase and fluorescence detection at 440 nm (with excitation at 375 nm). The calibration graph was linear from 5.00×10−10 mol L−1 to 5.00×10−7 mol L−1 for vitamin B1 with a correlation coefficient of 0.9991 (n=9). The detection limit was 1.0×10−10 mol L−1. The method was successfully used for determination of vitamin B1 at pg mL−1 levels in microalgal fermentation media and seawater after solid-phase extraction. Recovery was from 89 to 110% and the relative standard deviation was in the range 1.1 to 4.3%.  相似文献   

11.
A new electroactive label has been used to monitor immunoassays in the determination of human serum albumin (HSA) using glassy-carbon electrodes as supports for the immunological reactions. The label was a gold(I) complex, sodium aurothiomalate, which was bound to rabbit IgG anti-human serum albumin (anti-HSA-Au). The HSA was adsorbed on the electrode surface and the immunological reaction with gold-labelled anti-HSA was then performed for one hour by non-competitive or competitive procedures. The gold(I) bound to the anti-HSA was electrodeposited in 0.1 mol L−1 HCl at −1.00 V for 5 min then oxidised in 0.1 mol L−1 H2SO4 solution at +1.40 V for 1 min. Silver electrodeposition at −0.14 V for 1 min followed by anodic stripping voltammetry were then performed in aqueous 1.0 mol L−1 NH3–2.0×10−4 mol L−1 AgNO3. For both non-competitive and competitive formats, calibration plots in the ranges 5.0×10−10 to 1.0×10−8 mol L−1 and 1.0×10−10 to 1.0×10−9 mol L−1 HSA, respectively, with estimated detection limits of 1.5×10−10 mol L−1 (10 ng mL−1) and 1.0×10−10 mol L−1 (7 ng mL−1), respectively, were obtained. Levels of HSA in two healthy volunteer urine samples were also evaluated, using both immunoassay formats.  相似文献   

12.
A rapid and convenient method for the determination of furfural is presented that is based upon sequential perturbation of the Mn(II)-catalyzed B-Z oscillating system with different amounts of furfural using a continuous-flow stirred tank reactor (CSTR). When the sample was injected, the change in the amplitude and/or period was linearly proportional to the logarithm of the concentration of furfural over the range 3×10−8∼1×10−5 mol L−1. This method gave a detection limit of 3×10−9 mol L−1 under optimum conditions. Finally, the possible mechanism of furfural perturbation in the oscillating reaction is discussed. When the furfural was injected into the Mn(II)-catalyzed B-Z oscillating system, the change in the amplitude and/or period was linearly proportional to the logarithm of the concentration of furfural over the range 3×10−8~1×10−5 mol L−1, with a detection limit of 3×10−9 mol L−1 under optimum conditions.   相似文献   

13.
A sensitive and convenient method for the determination of trace europium ions using an oscillating chemical reaction involving Ce(IV) - KBrO3 - acetone - oxalic acid - H2SO4 was proposed. The results indicated that the changes in oscillating period (T) was linearly proportional to the negative logarithmic concentration of Eu3+ (-log C) in the range of 1.41 × 10−8 ˜ 1.41 × 10−4 mol L−1 (r = 0.9982) with a detection limit of 1.04 × 10−9 mol L−1. The recoveries were limited to the range of 99.5% to 100.8%. Under the same conditions, other rare earth ions did not interfere with the determination of Eu3+. In addition, a perturbation mechanism was also discussed briefly.   相似文献   

14.
Effects of La3+ and Eu3+ on outward potassium channels (Kout+) in Vicia guard cells have been studied by patch clamping technique. Extracellular La3+ inhibited Kout+ currents with a half-inhibition concentration (IC50) of 81 μmol·L−1. Interestingly, intracellular La3+ activated Kout+ currents at a free concentration of 1.13 × 10−14 mol·L−1, and inhibited Kout+ currents at a free concentration of 5.86 × 10−14 mol·L−1. Extracellular Eu3+ also activated Kout+ currents at concentrations of 10 μmol·L−1 and 50 μmol·L−1, and inhibited Kout+ currents at concentrations of more than 1 mmol·L−1. The effects of La3+ and Eu3+ on Kout+ currents may contribute to regulation of the plant water status, which may be one of the mechanisms of the biological effect of rare earth elements.  相似文献   

15.
A simple and fast flow injection fluorescence quenching method for the determination of iron in water has been developed. Fluorimetric determination is based on the measurement of the quenching effect of iron on salicylic acid fluorescence. An emission peak of salicylic acid in aqueous solution occurs at 409 nm with excitation at 299 nm. The carrier solution used was 2 × 10−6 mol L−1 salicylic acid in 0.1 mol L−1 NH4+/NH3 buffer solution at pH 8.5. Linear calibration was obtained for 5–100 μg L−1 iron(III) and the relative standard deviation was 1.25 % (n = 5) for a 20 μL injection volume iron(III). The limit of detection was 0.3 μg L−1 and the sampling rate was 60 h−1. The effect of interferences from various metals and anions commonly present in water was also studied. The method was successfully applied to the determination of low levels of iron in real samples (river, sea, and spring waters).  相似文献   

16.
The differential pulse (dp) polarograms of thiamine in neutral aqueous solutions exhibited six peaks at low depolarizer concentration (⋦10−4 mol dm−3) and only three peaks at concentrations ≥10−3 mol dm−3. Only one of these was found to correspond to the diffusion-controlled reduction of this compound at the dme and this was shown to be an irreversible two-electron process. The kinetic parameters derived from the dp polarograms were found to be in good agreement with those calculated from classical polarograms and were:E 1/2=−1·261 Vvs SCE,an a=0·54 andD≈3·5×10−6 cm2 sec−1 for 10−3 mol dm−3 thiamine in 0·1 mol dm−3 acetate buffer (pH 6·5). The reduction product has been identified as dihydrothiamine. The effect of pH on the dpp of thiamine was studied in the pH range 0–7. In the pH region 5·5 to 7·0 only one peak attributable to the B1 + form of thiamine is present. In the pH region 3·5–5·5 another dpp peak attributable to the protonated form (B1H2+) of thiamine was also observed. At pHs less than 3 only one peak was observed which could be attributed to the doubly protonated form (B1 H2 3+) of thiamine. Surfactants like triton-X-100 and CTABr were found to inhibit the electroreduction of thiamine due to the strong adsorption of these compounds on the dme. Thiamine itself was found to have an inhibitory effect on its own electroreduction, although to a smaller extent.  相似文献   

17.
The electrochemical behavior of the ofloxacin–copper complex, Cu(II)L2, at a mercury electrode, and the interaction of DNA with the complex have been investigated. The experiments indicate that the electrode reaction of Cu(II)L2 is an irreversible surface electrochemical reaction and that the reactant is of adsorbed character. In the presence of DNA, the formation of the electrochemically non-active complexes Cu(II)L2-DNA, results in the decrease of the peak current of Cu(II)L2. Based on the electrochemical behavior of the Cu(II)L2 with DNA, binding by electrostatic interaction is suggested and a new method for determining nucleic acid is proposed. Under the optimum conditions, the decrease of the peak current is in proportional to the concentration of nucleic acids in the range from 3 × 10−8 to 3 × 10−6 g · mL−1 for calf thymus DNA, from 1.6 × 10−8 to 9.0 × 10−7 g · mL−1 for fish sperm DNA, and from 3.3 × 10−8 to 5.5 × 10−7 g · mL−1 for yeast RNA. The detection limits are 3.3 × 10−9, 6.7 × 10−9 and 8.0 × 10−9 g · mL−1, respectively. The method exhibits good recovery and high sensitivity in synthetic samples and in real samples.  相似文献   

18.
Summary A capillary electrophoretic method for the determination of Cu(II) and Co(III) chelates with ethylenediamine in electroless copper plating baths has been developed. The influence of carrier electrolyte parameters such as nature of counter-ion and pH were studied and discussed. The optimised separations were carried out in a fused silica capillary (57 cm × 75 μm I.D.) filled with an ethylenediamine sulfate electrolyte (20 mol L−1 ethylendiamine, pH7.0 with H2SO4; applied voltage, +25 kV) using direct UV detection at 214 nm. The detection limits for a signalto-noise ratio of 3 and 10s hydrodynamic injection were 5×10−6 mol L−1 for Cu(II) and 1×10−6 mol L−1 for Co(III). The relative standard deviations of the peak areas for Cu(II) and Co(III) were found to be 1.5% and 2.4%, respectively, with five consecutive injections of standard solution containing 5×10−5 mol L−1 of each metal ion. Application of the method to the speciation of Cu(II) and Co(III) complexes in copper plating bath samples is also demonstrated.  相似文献   

19.
 An electrochemical study of the doxazosin oxidative process at carbon paste electrodes using different voltammetric techniques has been carried out. The process is irreversible and controlled by adsorption, giving rise to an oxidation wave around 1.0 V in citric acid-citrate buffer (pH 3.0). A mechanism based on the oxidation of the amine group is postulated. Two methods based on adsorptive stripping (AdS) of doxazosin at the C8-modified carbon paste electrode (C8-MCPE), before its voltammetric determination, are studied, using differential pulse voltammetry (DPV) and square wave voltammetry (SWV) as redissolution techniques. By means of AdS-DPV and C8-MCPE, doxazosin can be determined over the 1.0 × 10−9 to 3.0 × 10−8 mol L−1 range with a variation coefficient of 2.2% (2.0 × 10−8 mol L−1) and a limit of detection of 7.4 ×10−10 mol L−1. If AdS-SWV is used, a linear range from 1.0 × 10−9 to 4.0 × 10−8 mol L−1 is obtained, the variation coefficient being 2.8% (2.0 × 10−8 mol L−1, and the limit of detection reached 7.7 × 10−10 mol L−1. The AdS-DPV procedure was applied to the determination of doxazosin in urine and formulations. Received March 13, 1999. Revision December 23, 1999.  相似文献   

20.
A simple and fast catalytic adsorptive stripping voltammetric procedure for trace determination of Cr(VI) in natural samples containing high concentrations of humic substances has been developed. The procedure for chromium determination in the presence of DTPA and nitrates was employed as the initial method. In order to enhance the selectivity vs. Cr(III) the measurements were performed at 40°C. Interference from dissolved organic matter such as humic and fulvic acids was drastically decreased by adding Amberlite XAD-7 resin to the voltammetric cell before the deaeration step. The whole procedure was applied to a single cell, which allowed monitoring of the voltammetric scan. Optimum conditions for removing humic and fulvic acids due to their adsorption on XAD-7 resin were evaluated. The use of XAD-7 resin also minimize interferences from various cationic, anionic, and nonionic surfactants. The calibration graph for Cr(VI) for an accumulation time of 30 s was linear in the range 5 × 10−10 to 5 × 10−8 mol L−1. The relative standard deviation for determination of Cr(VI) at a concentration of 1 × 10−8 mol L−1 was 3.5% (n = 5). The detection limit estimated from 3 times the standard deviation for low Cr(VI) concentrations and an accumulation time of 30 s was about 1.3 × 10−10 mol L−1. The proposed method was successfully applied to Cr(VI) determination at trace levels in soil samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号