首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 We consider optimality systems of Karush-Kuhn-Tucker (KKT) type, which arise, for example, as primal-dual conditions characterizing solutions of optimization problems or variational inequalities. In particular, we discuss error bounds and Newton-type methods for such systems. An exhaustive comparison of various regularity conditions which arise in this context is given. We obtain a new error bound under an assumption which we show to be strictly weaker than assumptions previously used for KKT systems, such as quasi-regularity or semistability (equivalently, the R 0-property). Error bounds are useful, among other things, for identifying active constraints and developing efficient local algorithms. We propose a family of local Newton-type algorithms. This family contains some known active-set Newton methods, as well as some new methods. Regularity conditions required for local superlinear convergence compare favorably with convergence conditions of nonsmooth Newton methods and sequential quadratic programming methods. Received: December 10, 2001 / Accepted: July 28, 2002 Published online: February 14, 2003 Key words. KKT system – regularity – error bound – active constraints – Newton method Mathematics Subject Classification (1991): 90C30, 65K05  相似文献   

2.
Recent advances in the solution of quadratic assignment problems   总被引:6,自引:0,他引:6  
 The quadratic assignment problem (QAP) is notoriously difficult for exact solution methods. In the past few years a number of long-open QAPs, including those posed by Steinberg (1961), Nugent et al. (1968) and Krarup (1972) were solved to optimality for the first time. The solution of these problems has utilized both new algorithms and novel computing structures. We describe these developments, as well as recent work which is likely to result in the solution of even more difficult instances. Received: February 13, 2003 / Accepted: April 22, 2003 Published online: May 28, 2003 Key Words. quadratic assignment problem – discrete optimization – branch and bound Mathematics Subject Classification (1991): 90C27, 90C09, 90C20  相似文献   

3.
 Optimization problems involving the eigenvalues of symmetric and nonsymmetric matrices present a fascinating mathematical challenge. Such problems arise often in theory and practice, particularly in engineering design, and are amenable to a rich blend of classical mathematical techniques and contemporary optimization theory. This essay presents a personal choice of some central mathematical ideas, outlined for the broad optimization community. I discuss the convex analysis of spectral functions and invariant matrix norms, touching briefly on semidefinite representability, and then outlining two broader algebraic viewpoints based on hyperbolic polynomials and Lie algebra. Analogous nonconvex notions lead into eigenvalue perturbation theory. The last third of the article concerns stability, for polynomials, matrices, and associated dynamical systems, ending with a section on robustness. The powerful and elegant language of nonsmooth analysis appears throughout, as a unifying narrative thread. Received: December 4, 2002 / Accepted: April 22, 2003 Published online: May 28, 2003 Key Words.  eigenvalue optimization – convexity – nonsmooth analysis – duality – semidefinite program – subdifferential – Clarke regular – chain rule – sensitivity – eigenvalue perturbation – partly smooth – spectral function – unitarily invariant norm – hyperbolic polynomial – stability – robust control – pseudospectrum – H norm Mathematics Subject Classification (2000): 90C30, 15A42, 65F15, 49K40  相似文献   

4.
 We study a general multiobjective optimization problem with variational inequality, equality, inequality and abstract constraints. Fritz John type necessary optimality conditions involving Mordukhovich coderivatives are derived. They lead to Kuhn-Tucker type necessary optimality conditions under additional constraint qualifications including the calmness condition, the error bound constraint qualification, the no nonzero abnormal multiplier constraint qualification, the generalized Mangasarian-Fromovitz constraint qualification, the strong regularity constraint qualification and the linear constraint qualification. We then apply these results to the multiobjective optimization problem with complementarity constraints and the multiobjective bilevel programming problem. Received: November 2000 / Accepted: October 2001 Published online: December 19, 2002 Key Words. Multiobjective optimization – Variational inequality – Complementarity constraint – Constraint qualification – Bilevel programming problem – Preference – Utility function – Subdifferential calculus – Variational principle Research of this paper was supported by NSERC and a University of Victoria Internal Research Grant Research was supported by the National Science Foundation under grants DMS-9704203 and DMS-0102496 Mathematics Subject Classification (2000): Sub49K24, 90C29  相似文献   

5.
 We present a unified convergence rate analysis of iterative methods for solving the variational inequality problem. Our results are based on certain error bounds; they subsume and extend the linear and sublinear rates of convergence established in several previous studies. We also derive a new error bound for $\gamma$-strictly monotone variational inequalities. The class of algorithms covered by our analysis in fairly broad. It includes some classical methods for variational inequalities, e.g., the extragradient, matrix splitting, and proximal point methods. For these methods, our analysis gives estimates not only for linear convergence (which had been studied extensively), but also sublinear, depending on the properties of the solution. In addition, our framework includes a number of algorithms to which previous studies are not applicable, such as the infeasible projection methods, a separation-projection method, (inexact) hybrid proximal point methods, and some splitting techniques. Finally, our analysis covers certain feasible descent methods of optimization, for which similar convergence rate estimates have been recently obtained by Luo [14]. Received: April 17, 2001 / Accepted: December 10, 2002 Published online: April 10, 2003 RID="⋆" ID="⋆" Research of the author is partially supported by CNPq Grant 200734/95–6, by PRONEX-Optimization, and by FAPERJ. Key Words. Variational inequality – error bound – rate of convergence Mathematics Subject Classification (2000): 90C30, 90C33, 65K05  相似文献   

6.
 In this paper, we survey the most recent methods that have been developed for the solution of semidefinite programs. We first concentrate on the methods that have been primarily motivated by the interior point (IP) algorithms for linear programming, putting special emphasis in the class of primal-dual path-following algorithms. We also survey methods that have been developed for solving large-scale SDP problems. These include first-order nonlinear programming (NLP) methods and more specialized path-following IP methods which use the (preconditioned) conjugate gradient or residual scheme to compute the Newton direction and the notion of matrix completion to exploit data sparsity. Received: December 16, 2002 / Accepted: May 5, 2003 Published online: May 28, 2003 Key words. semidefinite programming – interior-point methods – polynomial complexity – path-following methods – primal-dual methods – nonlinear programming – Newton method – first-order methods – bundle method – matrix completion The author's research presented in this survey article has been supported in part by NSF through grants INT-9600343, INT-9910084, CCR-9700448, CCR-9902010, CCR-0203113 and ONR through grants N00014-93-1-0234, N00014-94-1-0340 and N00014-03-1-0401. Mathematics Subject Classification (2000): 65K05, 90C06, 90C22, 90C25, 90C30, 90C51  相似文献   

7.
Combining search directions using gradient flows   总被引:2,自引:0,他引:2  
 The efficient combination of directions is a significant problem in line search methods that either use negative curvature, or wish to include additional information such as the gradient or different approximations to the Newton direction. In this paper we describe a new procedure to combine several of these directions within an interior-point primal-dual algorithm. Basically, we combine in an efficient manner a modified Newton direction with the gradient of a merit function and a direction of negative curvature, if it exists. We also show that the procedure is well-defined, and it has reasonable theoretical properties regarding the rate of convergence of the method. We also present numerical results from an implementation of the proposed algorithm on a set of small test problems from the CUTE collection. Received: November 2000 / Accepted: October 2002 Published online: February 14, 2003 Key Words. negative curvature – primal-dual methods – interior-point methods – nonconvex optimization – line searches Mathematics Subject Classification (1991): 49M37, 65K05, 90C30  相似文献   

8.
Scenario reduction in stochastic programming   总被引:2,自引:0,他引:2  
 Given a convex stochastic programming problem with a discrete initial probability distribution, the problem of optimal scenario reduction is stated as follows: Determine a scenario subset of prescribed cardinality and a probability measure based on this set that is the closest to the initial distribution in terms of a natural (or canonical) probability metric. Arguments from stability analysis indicate that Fortet-Mourier type probability metrics may serve as such canonical metrics. Efficient algorithms are developed that determine optimal reduced measures approximately. Numerical experience is reported for reductions of electrical load scenario trees for power management under uncertainty. For instance, it turns out that after 50% reduction of the scenario tree the optimal reduced tree still has about 90% relative accuracy. Received: July 2000 / Accepted: May 2002 Published online: February 14, 2003 Key words. stochastic programming – quantitative stability – Fortet-Mourier metrics – scenario reduction – transportation problem – electrical load scenario tree Mathematics Subject Classification (1991): 90C15, 90C31  相似文献   

9.
 We perform a smoothed analysis of a termination phase for linear programming algorithms. By combining this analysis with the smoothed analysis of Renegar's condition number by Dunagan, Spielman and Teng (http://arxiv.org/abs/cs.DS/0302011) we show that the smoothed complexity of interior-point algorithms for linear programming is O(m 3 log(m/Σ)). In contrast, the best known bound on the worst-case complexity of linear programming is O(m 3 L), where L could be as large as m. We include an introduction to smoothed analysis and a tutorial on proof techniques that have been useful in smoothed analyses. Received: December 10, 2002 / Accepted: April 28, 2003 Published online: June 5, 2003 Key words. smoothed analysis – linear programming – interior-point algorithms – condition numbers Mathematics Subject Classification (1991): 90C05, 90C51, 68Q25  相似文献   

10.
 We consider random evolution of an interface on a hard wall under periodic boundary conditions. The dynamics are governed by a system of stochastic differential equations of Skorohod type, which is Langevin equation associated with massless Hamiltonian added a strong repelling force for the interface to stay over the wall. We study its macroscopic behavior under a suitable large scale space-time limit and derive a nonlinear partial differential equation, which describes the mean curvature motion except for some anisotropy effects, with reflection at the wall. Such equation is characterized by an evolutionary variational inequality. Received: 10 January 2002 / Revised version: 18 August 2002 / Published online: 15 April 2003 Mathematics Subject Classification (2000): 60K35, 82C24, 35K55, 35K85 Key words or phrases: Hydrodynamic limit – Effective interfaces – Hard wall – Skorohod's stochastic differential equation – Evolutionary variational inequality  相似文献   

11.
 We study Graver test sets for linear two-stage stochastic integer programs and show that test sets can be decomposed into finitely many building blocks whose number is independent on the number of scenarios of the stochastic program. We present a finite algorithm to compute the building blocks directly, without prior knowledge of test set vectors. Once computed, building blocks can be employed to solve the stochastic program by a simple augmentation scheme, again without explicit knowledge of test set vectors. Finally, we report preliminary computational experience. Received: March 14, 2002 / Accepted: March 27, 2002 Published online: September 27, 2002 Key words. test sets – stochastic integer programming – decomposition methods Mathematics Subject Classification (2000): 90C15, 90C10, 13P10  相似文献   

12.
 We introduce a new upper bound for the maximum-entropy sampling problem. Our bound is described as the solution of a linear integer program. The bound depends on a partition of the underlying set of random variables. For the case in which each block of the partition has bounded cardinality, we describe an efficient dynamic-programming algorithm to calculate the bound. For the very special case in which the blocks have no more than two elements, we describe an efficient algorithm for calculating the bound based on maximum-weight matching. This latter formulation has particular value for local-search procedures that seek to find a good partition. We relate our bound to recent bounds of Hoffman, Lee and Williams. Finally, we report on the results of some computational experiments. Received: September 27, 2000 / Accepted: July 26, 2001 Published online: September 5, 2002 Key words. experimental design – design of experiments – entropy – maximum-entropy sampling – matching – integer program – spectral bound – Fischer's inequality – branch-and-bound – dynamic programming Mathematics Subject Classification (2000): 52B12, 90C10 Send offprint requests to: Jon Lee Correspondence to: Jon Lee  相似文献   

13.
 Optimization models and methods have been used extensively in the forest industry. In this paper we describe the general wood-flow in forestry and a variety of planning problems. These cover planning periods from a fraction of a second to more than one hundred years. The problems are modelled using linear, integer and nonlinear models. Solution methods used depend on the required solution time and include for example dynamic programming, LP methods, branch & bound methods, heuristics and column generation. The importance of modelling and qualitative information is also discussed. Received: January 15, 2003 / Accepted: April 24, 2003 Published online: May 28, 2003 Key words. Forestry – modelling – routing – transportation – production planning Mathematics Subject Classification (2000): 20E28, 20G40, 20C20  相似文献   

14.
 Kesten and Spitzer have shown that certain random walks in random sceneries converge to stable processes in random sceneries. In this paper, we consider certain random walks in sceneries defined using stationary Gaussian sequence, and show their convergence towards a certain self-similar process that we call fractional Brownian motion in Brownian scenery. Received: 17 April 2002 / Revised version: 11 October 2002 / Published online: 15 April 2003 Research supported by NSFC (10131040). Mathematics Subject Classification (2002): 60J55, 60J15, 60J65 Key words or phrases: Weak convergence – Random walk in random scenery – Local time – Fractional Brownian motion in Brownian scenery  相似文献   

15.
 An iterative framework for solving generalized equations with nonisolated solutions is presented. For generalized equations with the structure , where is a multifunction and F is single-valued, the framework covers methods that, at each step, solve subproblems of the type . The multifunction approximates F around s. Besides a condition on the quality of this approximation, two other basic assumptions are employed to show Q-superlinear or Q-quadratic convergence of the iterates to a solution. A key assumption is the upper Lipschitz-continuity of the solution set map of the perturbed generalized equation . Moreover, the solvability of the subproblems is required. Conditions that ensure these assumptions are discussed in general and by means of several applications. They include monotone mixed complementarity problems, Karush-Kuhn-Tucker systems arising from nonlinear programs, and nonlinear equations. Particular results deal with error bounds and upper Lipschitz-continuity properties for these problems. Received: November 2001 / Accepted: November 2002 Published online: December 9, 2002 Key Words. generalized equation – nonisolated solutions – Newton's method – superlinear convergence – upper Lipschitz-continuity – mixed complementarity problem – error bounds Mathematics Subject Classification (1991): 90C30, 65K05, 90C31, 90C33  相似文献   

16.
 This article introduces a concept of transience and recurrence for a Quantum Markov Semigroup and explores its main properties via the associated potential. We show that an irreducible semigroup is either recurrent or transient and characterize transient semigroups by means of the existence of non trivial superharmonic operators. Received: 27 January 2003 / Revised version: 19 February 2003 / Published online: 12 May 2003 This research has been partially supported by the ``Cátedra Presidencial en Análisis Cualitativo de Sistemas Dinámicos Cuánticos', DIPUC, FONDECYT project 1030552, MIUR program ``Probabilità Quantistica e Applicazioni', 2003-2004 and MECESUP PUC 0103. Mathematics Subject Classification (2000): 60J45, 81S25, 60J99, 37A50, 47A40 Key words or phrases: Quantum Markov semigroups – Potential theory – Markov processes  相似文献   

17.
 The stability number α(G) for a given graph G is the size of a maximum stable set in G. The Lovász theta number provides an upper bound on α(G) and can be computed in polynomial time as the optimal value of the Lovász semidefinite program. In this paper, we show that restricting the matrix variable in the Lovász semidefinite program to be rank-one and rank-two, respectively, yields a pair of continuous, nonlinear optimization problems each having the global optimal value α(G). We propose heuristics for obtaining large stable sets in G based on these new formulations and present computational results indicating the effectiveness of the heuristics. Received: December 13, 2000 / Accepted: September 3, 2002 Published online: December 19, 2002 RID="★" ID="★" Computational results reported in this paper were obtained on an SGI Origin2000 computer at Rice University acquired in part with support from NSF Grant DMS-9872009. Key Words. maximum stable set – maximum clique – minimum vertex cover – semidefinite program – semidefinite relaxation – continuous optimization heuristics – nonlinear programming Mathematics Subject Classification (2000): 90C06, 90C27, 90C30  相似文献   

18.
 Results on existence, uniqueness, non-explosion and stochastic monotonicity are obtained for one-dimensional Markov processes having non-local pseudo-differential generators with symbols of polynomial growth. It is proven that the processes of this kind can be obtained as the limits of random evolutions of systems of identical indistinguishable particles with k-nary interaction. Received: 24 May 2002 / Revised version: 19 February 2003 / Published online: 12 May 2003 Mathematics Subject Classification (2000): 60K35, 60J75, 60J80 Key words or phrases: Interacting particles – k-nary interaction – Measure-valued processes – One-dimensional Feller processes with polynomially growing symbols – Duality – Stochastic monotonicity – Heat kernel  相似文献   

19.
20.
Using the concept of subdifferential of cone-convex set valued mappings recently introduced by Baier and Jahn J. Optimiz. Theory Appl. 100 (1999), 233–240, we give necessary optimality conditions for nonconvex multiobjective optimization problems. An example illustrating the usefulness of our results is also given. Mathematics Subject classification: Primary 90C29, 90C26; Secondary 49K99.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号