首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Biosurfactant produced by Pseudomonas aeruginosa, Bacillus subtilis and Rhodococcus erythropolis that isolated from the formation water of Chinese petroleum reservoir has been compared in surface abilities and oil recovery. Maximum biosurfactant production reached to about 2.66 g/l and the surface tension of liquid decreased from 71.2 to 22.56 mN/m using P. aeruginosa. Three strains exhibited a good ability to emulsify the crude oil, and biosurfactant of P. aeruginosa attained an emulsion index of 80% for crude oil which was greater than other strains. Stability studies were carried out under the extreme environmental conditions, such as high temperature, pH, salinity and metal ions. Results showed an excellent resistance of all biosurfactants to retain their surface-active properties at extreme conditions. It was found that the biosurfactants from three isolated bacteria showed a good stability above pH of 5, but at lower pH (from 1 to 5) they will harmfully be affected. They were able to support the condition up to 20 g/l salinity. P. aeruginosa biosurfactant was even stable at the higher salinity. Regarding temperature, all produced biosurfactants demonstrated a good stability in the temperature up to 120 °C. But stability of three biosurfactants was affected by monovalent and trivalent ions. Oil recovery experiments in physical simulation showed 7.2-14.3% recovery of residual oil after water flooding when the biosurfactant of three strains was added. These results suggest that biosurfactants of these indigenous isolated strains are appropriate candidates for enhanced oil recovery with a preference to biosurfactant of P. aeruginosa.  相似文献   

2.
A summary of properties of water-in-crude oil emulsions from the Norwegian Continental Shelf or model water-in-oil emulsions is given. A separation method for the indigenous surface active crude oil components based on adsorption/extraction was developed. These components and their films were characterized by Mw determinations, FT-IR, Langmuir-Blodgett, surface/interfacial tension, dielectric spectroscopy and interactions with chemical destabilizers. The stability/instability properties of authentic water-in-crude oil emulsions can be reproduced by model W/O emulsions stabilized by the interfacially active crude oil fraction. Processes inside the water droplets and at the W/O interface taking place upon destabilization were followed by means of dielectric spectroscopy.  相似文献   

3.
In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32?±?4.09 to 97.41 and 87.29?±?2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2?×?10?3 to 28.6?×?10?3 N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.  相似文献   

4.
With the cheap and abundant resource of alkali lignin as feedstock, surfactants for enhanced oil recovery were synthesized by amination and alkylation reaction of lignosulfonate. The effects of amination conditions, including the ratio of raw materials, amination reagent, temperature, and reaction time, on nitrogen contents and surface tension of the surfactants were investigated. The results showed that ethylenediamine was more suitable for amination, and the molar ratio of alkali lignin, ethylenediamine, and formaldehyde was 1:2:1.5 at 80°C for 5 hours. The structure of synthesized products was characterized by Fourier transform infrared spectrometry. The HLB value of synthesized product was 10. The interfacial tension between Daqing crude oil and synthetic water could be decreased to 10?2 mN/m with synthesized surfactant and NaOH at 45°C. Moreover, the effects of molecular weight of surfactants on interfacial tension were also studied. The synthesized surfactant (Mw > 10,000) showed a better interfacial activity on Daqing crude oil.  相似文献   

5.
The time dependence of the interfacial tension between water–acidic crude oil and water–synthetic oil was investigated for aqueous phase pHs ranging from 2 to 9 using the du Noüy ring method at 20°C. Myristic acid in dodecane was selected as a model (synthetic oil) for acidic crude oil containing indigenous surfactants, and the similarities and differences between the dynamic interfacial tension behaviours of the natural and synthetic crude oil systems were compared. The initial interfacial tension and the relaxation of the interfacial tension are sensitive to the aqueous phase pH for both systems. The adsorption kinetics of the indigenous surfactants and myristic acid could be well fitted with the monoexponential model, and the time constants obtained in this manner indicates that reorganization of the indigenous surfactants and myristic acid at the w/o interface are pH dependent. The experimental results also indicate that indigenous surfactants in acidic crude oil and myristic acid in dodecane have similar film formation behaviours at the w/o interface for the range of pHs investigated.  相似文献   

6.
Partition coefficients, surface tension, and interfacial tension for some polar organic components dissolved in oil/water model systems have been investigated. The systems consist of isooctane modeling the oil phase and of water solutions of NaCl and CaCl2 modeling the water phase. The organic compounds examined were 1-naphtoic acid, 5-indanol, and quinoline, all well-defined molecules known to be representative of polar components in crude oil. The dependence on pH, salinity, and ionic strength in the water phase was investigated. The surface tension and interfacial tension were also examined as a function of component concentration. The results show a connection between the distribution of the polar components and the interfacial tension. Correspondence between the partition coefficient and the pKa value for the components is also reported. For 1-naphtoic acid none of the two ionization forms of the molecule are found to be surface active in aqueous solution. For 5-indanol both forms are surface active, and for quinoline only the nonionic form of the molecule is found to be surface active. The results indicate that the aqueous phase is the one that governs the interfacial tension. Increasing salinity increases the concentration of the component in the oil phase and decreases the interfacial tension between the oil phase and the aqueous phase. The results are explained due to the "salting-out" effect and to changes in the electrostatics for the various systems. Copyright 1999 Academic Press.  相似文献   

7.
A highly efficient oil-degrading bacteria JZX-01 was isolated from the oil-contaminated soil of the seacoast near the Boxi Offshore Oil Field of China. Morphological, physiological, and 16S rDNA gene sequence analyses indicated that JZX-01 was assigned to the genus Rhodococcus sp. This strain decomposed 65.27?±?5.63 % of the crude oil in 9 days. Gas chromatography–mass spectrometry analysis showed that even the long-chain hydrocarbons (C31–C38) and branched alkanes (pristine and phytane), which were regarded as the stubborn ones, could be degraded. Further study showed that the bacteria still has good oil degradation ability at low temperatures as well as under high salt conditions. Moreover, JZX-01 was found to have a biosurfactant-producing capacity, which significantly favors the surface tension reduction and crude oil degradation. The promising isolated strain Rhodococcus sp. JZX-01 could be further used for the bioremediation of oil-polluted soil or seawater in a wide range of temperatures and high salt conditions.  相似文献   

8.
Wettablity alteration of rock surface is an important mechanism for surfactant-based enhanced oil recovery (EOR) processes. Two salt and temperature-tolerant surfactant formulations were developed based on the conditions of high temperature (97–120°C) and high salinity (20 × 104 mg/L) reservoirs where a surfactant-based EOR process is attempted. Both the two sufactant formulations can achieve ultralow interfacial tension level (≤10?3 mN/m) with crude oil after aging for 125 days at reservoir conditions. Wettability alteration of core slices induced by the two surfactant formulations was evalutated by measuring contact angles. Core flooding experiments were carried out to study the influence of initial rock wettabilities on oil recovery in the crude oil/surfactant/formation water/rock system. The results indicated that the two formulations could turn oil-wet core slices into water-wet at 90–120°C and 20 × 104 mg/L salinity, while the water-wet core slices retained their hydrophilic nature. The core flooding experiments showed that the water-wet cores could yield higher oil recovery compared with the oil-wet cores in water flooding, surfactant, and subsequent water flooding process. The two surfactant formulations could successfully yield additional oil recovery in both oil-wet and water-wet cores.  相似文献   

9.
The use of mulch made of biodegradable plastic in agriculture is expected to help solve the problem of the enormous amount of plastic waste emission, and to save the labor of removing the mulch after harvesting crops. In this study, we isolated a microorganism possessing the ability to degrade one of the promising biodegradable plastics, poly(butylene succinate) (PBS), and investigated the degradation characteristics of the microorganism in soil environments. Fungal strain WF-6, belonging to Fusarium solani, that had not been reported could be isolated from farmland as the PBS-degrading microorganism. Strain WF-6 degraded 2.8 percent of the PBS in a 14-day experimental run in a sterile soil environment, as determined by measuring CO2 evolution. Furthermore, we ascertained that the degradability of strain WF-6 was enhanced by co-culturing with the newly isolated bacterial strain Stenotrophomonas maltophilia YB-6, which itself does not show PBS-degrading activity. We then investigated the effects of cell density of the indigenous microorganisms in the soil environments on the degradability of the co-culture of strains WF-6 and YB-6 by inoculating these strains into non-sterilized and partially sterilized soils, which contained 108, 106, and 103 CFU/g-dry solid of soil of indigenous microorganisms. The degradability strongly depended on the cell density level of the indigenous microorganisms and was remarkably diminished when the cell concentration level was the highest, 108 CFU/g-dry solid. Quantitative PCR analysis revealed that the growth of strains WF-6 and YB-6 was inhibited in the non-sterile soil environment with the highest cell density level of the indigenous microorganisms.  相似文献   

10.
Microbial enhanced oil recovery (MEOR) is potentially useful to recover incremental oil from a reservoir being beyond primary and secondary recovery operations. Effort has been made to isolate and characterize natural biosurfactant produced by bacterial isolates collected from various oil fields of ONGC in Assam. Production of biosurfactant has been considered to be an effective major index for the purpose of enhanced oil recovery. On the basis of the index, four promising bacterial isolates: Pseudomonas aeruginosa (MTCC7815), P. aeruginosa (MTCC7814), P. aeruginosa (MTCC7812) and P. aeruginosa (MTCC8165) were selected for subsequent testing. Biosurfactant produced by the promising bacterial isolates have been found to be effective in the recovery of crude oil from saturated column under laboratory conditions. Two bacterial strains: P. aeruginosa (MTCC7815) and P. aeruginosa (MTCC7812) have been found to be the highest producer of biosurfactant. Tensiometer studies revealed that biosurfactants produced by these bacterial strains could reduce the surface tension (sigma) of the growth medium from 68 to 30 mN m(-1) after 96 h of growth. The bacterial biosurfactants were found to be functionally stable at varying pH (2.5-11) conditions and temperature of 100 degrees C. The treatment of biosurfactant containing, cell free culture broth in crude oil saturated sand pack column could release about 15% more crude oil at 90 degrees C than at room temperature and 10% more than at 70 degrees C under laboratory condition.  相似文献   

11.
A bacterial strain was isolated and cultured from the oil excavation areas in tropical zone in northern China. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, WJ-1, was identical to those of cultured representatives of the species Pseudomonas aeruginosa. This bacterium was able to produce a type of biosurfactant. Compositional analysis revealed that the extracted biosurfactant was composed of high percentage lipid (∼74%, w/w) and carbohydrate (∼20%, w/w) in addition to a minor fraction of protein (∼6%, w/w). The best production of 50.2 g/l was obtained when the cells were grown on minimal salt medium containing 6.0% (w/v) glucose and 0.75% (w/v) sodium nitrate supplemented with 0.1% (v/v) element solution at 37 °C and 180 rpm after 96 h. The optimum biosurfactant production pH value was found to be 6.0–8.0. The biosurfactant of WJ-1, with the critical micelle concentration of 0.014 g/L, could reduce surface tension to 24.5 mN/m and emulsified kerosene up to EI24 ≈95. The results obtained from time course study indicated that the surface tension reduction and emulsification potential was increased in the same way to cell growth. However, maximum biosurfactant production occurred and established in the stationary growth phase (after 90 h). Thin layer chromatography, Fourier transform infrared spectrum, and mass spectrum analysis indicate the extracted biosurfactant was affiliated with rhamnolipid. The core holder flooding experiments demonstrated that the oil recovery efficiency of strain and its biosurfactant was 23.02% residual oil.  相似文献   

12.
Experimental studies are conducted in order to elucidate the mechanisms of monoethanolamide responsible for synergism on lowering interfacial tension and decreasing loss due to adsorption on surface of reservoir sand and precipitation with multivalent cations in model oil/water/surfactants/brine systems. The interfacial tensions between solutions containing crude oil and monoethanolamide, petroleum sulfonates, or mixture of monoethanolamide and petroleum sulfonates at different ratios are studied without any alkali added in the solution. The results show significant synergic effect between monoethanolamide and petroleum sulfonates can reduce the interfacial tension to ultralow. Adsorption isotherms of monoethanolamide, petroleum sulfonates and mixture solution are determined to assess the effect of monoethanolamide on reducing the loss of petroleum sulfonates in formation. Static adsorption experiments indicate that the loss of petroleum sulfonates for adsorption and precipitation can be reduced on a great degree when monoethanolamide is mixed with petroleum sulfonates. The core-flooding tests show that the enhanced oil recovery with the formulation of surfactants of 0.3 wt% petroleum sulfonates and 0.2 wt% monoethanolamide can be increased by 26.6% without any alkali added in the flooding solution.  相似文献   

13.
Surfactin produced by Bacillus subtilis (ATCC 21332) was used to examine the effect of altering salt concentration, pH, and temperature on surfactin activity (as measured by reductions in surface tension). These parameters are some of the conditions that define oil reservoir characteristics and can affect the application of surfactants. The Biotechnology for Oilfield Operations research program at the Idaho National Engineering and Environmental Laboratory (INEEL) has successfully produced surfactin from potato process effluents for possible use as an economical alternative to chemical surfactants for improved oil recovery. Surfactants enhance the recovery of oil through a reduction of the interfacial tension between the oil and water interfaces, or by mediating changes in the wettability index of the system. We investigated changes in surfactin activity under a range of conditions by measuring surface tension. Surface tension was determined using video image analysis of inverted pendant drops. Experimental variables included NaCl (0–10%), pH (3.0–10.0), and temperature (21–70°C). Each of these parameters, as well as selected combinations, resulted in discrete changes in surfactin activity. It is therefore important to consider the exploration of the studied surfactin as an enhanced oil recovery agent.  相似文献   

14.
In order to research the flooding efficiency of flooding systems and wettability on the simulant rock surface,the orthogonal-test-design method was used to determine the optimal formula for the crude oil from the Chunliang zone of Shengli oil field by transient interfacial tension(IFT). The results indicate that two optimal formulas are naturally mixed carboxylate SDC-V(0.35%,0.36%),nonionic surfactant FBB(0.06%,0.07%),Alkaline NaHCO3 / Na2CO3 weight ratio of(0.8%,1.2%)and HPAM(0.05%,0.15%),and in the coreflood experiment,their oil recovery are(14.6%,16.7%)OOIP respectively. The contact angles have been determined for the two optimal formula systems and their components on the simulant rock surface,which points out the relationship between the flooding efficiency and contact angle is showed identification,that is,the more oil recovery the less contact angle. It will be useful to the application research of microgravity.  相似文献   

15.
Ferula gummosa Boiss. (Apiaceae) fruit volatile oil was analyzed by GC/MS. Seventy-three components (96.89%) were identified, and the major components were β-pinene (43.78%), α-pinene (27.27%), and myrcene (3.37%). The antimicrobial activity of the oil was tested on three strains of Gram positive bacteria (Staphylococcus aureus, S. epidermis, and Bacillus subtilis), three strains of Gram negative bacteria (Escherichia coli, Salmonella typhi, and Pseudomonas aeruginosa), and two strains of fungi (Candida albicans and C. kefyr). The essential oil remarkably inhibited the growth of the tested microorganisms. The results indicate that the fruits have potential for use as an aromatic antimicrobial agent.__________Published in Khimiya Prirodnykh Soedinenii, No. 3, pp. 252–254, May–June, 2005.  相似文献   

16.
Water-soluble surfactants based on rosin acids were synthesized from condensed rosin acid-formaldehyde. This was completed by esterification of series of rosin acid formaldehyde resins with poly(ethylene glycol) having different molecular weights to produce series of rosin esters. The structure of the produced resins was determined by infrared and 1HNMR analysis. The molecular weight of the produced surfactants was determined by gel permeation chromatography (GPC) technique. The surface properties of the prepared surfactants were determined by measuring the surface tension at different temperatures. The surface tension, critical micelle concentration (CMC), and surface activities were determined at different temperatures. Surface parameters such as surface excess concentration (Γmax), the area per molecule at interface (Amin), and the effectiveness of surface tension reduction (πCMC) were determined from the adsorption isotherms of the prepared surfactants. Some thermodynamic data for the adsorption process were calculated and are discussed. The dispersion efficiency of the prepared surfactants as petroleum oil spill dispersants was determined and correlated with the surface activity, concentrations of the prepared surfactants and type of petroleum crude oil.  相似文献   

17.
Separation and Chemical Characterization of Wetting Crude Oil Compounds   总被引:1,自引:0,他引:1  
To improve the understanding of wettability, especially the influence of colloidal stability and composition of crude oil, wetting experiments on quartz sand were performed with an asphaltene-rich oil, a resin-rich oil, and with model oils containing different colloid compositions. A two-step procedure was developed to investigate the wetting behavior. In the first step those crude oil components were extracted, which preferentially wet solid surfaces. The extracted crude oil components were characterized in the second step. The amount of adsorbed oil components correlates with the stability of the crude oil colloids: low colloidal stability of crude oil leads to larger amounts of adsorbed components than does high colloidal stability. The addition of resins and/or low molecular weight asphaltenes to the crude oil stabilizes the crude oil colloids; i.e., a lower amount of wetting components are isolated by extraction in such systems. To find out, which fraction of the adsorbed oil components determines the wetting behavior of a crude oil, the wetting properties of the toluene solutions of these fractions were compared to those of the toluene solutions of the precipitated crude oil colloids. The fractions extracted with the solvent systems chloroform and methanol/chloroform showed nearly the same wetting behavior as the crude oil colloids. These fractions are characterized by the highest molecular weights, higher sulfur compositions, and the lowest H/C ratios. On the other hand, the nitrogen compounds predominate in the acetone fraction.  相似文献   

18.

This study was conducted to evaluate the co-culture ability of two yeast (Sarocladium sp. and Cryptococcus sp.) isolates as compared to their individual cultures in surfactant production and oil degradation. The results showed that individual culture of each strain was capable of producing surfactant, degrading oil, and pyrene; also, a synergistic effect was observed when a co-culture was applied. Oil removal and biomass production were 28 and 35% higher in the co-culture than in individual cultures, respectively. To investigate the synergistic effects of mix culture on oil degradation, the surface tension, emulsification activity (EA), and cell surface hydrophobicity of individual and co-culture were studied. A comparison between the produced biosurfactant and chemical surfactants showed that individual culture of each yeast strain could reduce the surface tension like SDS and about 10% better than Tween 80. The results showed that the microbial consortium could reduce the surface tension more, by 10 and 20%, than SDS and Tween 80, respectively. Both individual cultures of Sarocladium sp. and Cryptococcus sp. showed good emulsification activity (0.329 and 0.412, respectively) when compared with a non-inoculated medium. Emulsification activity measurement for the two yeast mix cultures showed an excellent 33 and 67% increase as compared to the individual culture of Sarocladium sp. and Cryptococcus sp., respectively. The cell surface hydrophobicity of Sarocladium sp. and Cryptococcus sp. increased (38 and 85%) when the cells were treated with pyrene as a hydrophobic substrate for four generations. Finally, a 40% increase for pyrene degradation was measured in a co-culture of the two yeast mix culture. According to the results of the present study, the co-culture system exhibited better performance and this study will enhance the understanding of the synergistic effects of yeast co-culture on oil degradation.

  相似文献   

19.
基于两相分离的乳状液稳定模型,研究了三元复合驱模拟原油乳状液稳定动力学特性;通过液膜强度和油水界面张力探讨了碱/表面活性剂/聚合物对模拟原油乳状液稳定动力学特性的影响机理。 结果表明,乳状液稳定模型可以很好的评价乳状液的稳定性,并得到乳状液的稳定动力学特性;碱浓度小于900 mg/L有利于乳状液的稳定,碱浓度大于900 mg/L不利于乳状液的稳定;表面活性剂和聚合物浓度的增加使得形成的模拟原油乳状液更加稳定;模拟原油乳状液的稳定作用主要是通过碱、表面活性剂降低油水界面张力并增加油水界面膜强度,聚合物通过提高界面膜强度实现的,三者存在协同效应。  相似文献   

20.
The significant challenges presented by the April 20, 2010 explosion, sinking, and subsequent oil spill of the Deepwater Horizon drilling platform in Canyon Block 252 about 52 miles southeast of Venice, LA, USA greatly impacted Louisiana??s coastal ecosystem including the sea food industry, recreational fishing, and tourism. The short-term and long-term impact of this oil spill are significant, and the Deepwater Horizon spill is potentially both an economic and an ecological disaster. Microbes present in the water column and sediments have the potential to degrade the oil. Oil degradation could be enhanced by biostimulation method. The conventional approach to bioremediation of petroleum hydrocarbon is based on aerobic processes. Anaerobic bioremediation has been tested only in a very few cases and is still considered experimental. The currently practiced conventional in situ biorestoration of petroleum-contaminated soils and ground water relies on the supply of oxygen to the subsurface to enhance natural aerobic processes to remediate the contaminants. However, anaerobic microbial processes can be significant in oxygen-depleted subsurface environments and sediments that are contaminated with petroleum-based compounds such as oil-impacted marshes in Louisiana. The goal of this work was to identify the right conditions for the indigenous anaerobic bacteria present in the contaminated sites to enhance degradation of petroleum hydrocarbons. We evaluated the ability of microorganisms under a variety of electron acceptor conditions to degrade petroleum hydrocarbons. Researched microbial systems include sulfate-, nitrate-reducing bacteria, and fermenting bacteria. The results indicated that anaerobic bacteria are viable candidates for bioremediation. Enhanced biodegradation was attained under mixed electron acceptor conditions, where various electron-accepting anaerobes coexisted and aided in degrading complex petroleum hydrocarbon components of marsh sediments in the coastal Louisiana. Significant degradation of oil also occurred under sulfate-reducing and nitrate-reducing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号