首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
Spatial distribution of soil forces on the surface of plough is an important aspect that can help engineers for improving efficiency of tillage implement. It was analyzed at eleven different points of the moldboard plough with the help of sensors accompanied with the virtual instrument developed in LabView software with the aid of other supporting instruments. It was observed that soil forces increased with an increase in speed and depth. Depth changed soil forces more at upper parts than lower parts whereas speed affected rear parts more than the front part of the plough. Draft forces followed almost similar trend and least value of 308.17 N experimental draft force was found at 1 m/s speed and 5 cm depth under 33% moisture content. Cumulative soil forces found too smaller than the draft as they represented the force spatial distribution of specific parts of plough. It was observed that sensor technology provided real time picture of force variation during tillage process that could save time and effort.  相似文献   

2.
A study on four mouldboard ploughs, that are commonly used with animal traction in Kenya, was conducted. Draught, suction and torsion loads were measured and specific draught evaluated in field tests on four sites with typical agricultural soil conditions. Draught and suction are the horizontal and vertical components of the reaction to soil force, respectively, while torsion is the resisting moment about the plough shank. The objective was to quantify these parameters and to study their characteristics under variable conditions at operation, at speeds up to 1.12 m/s and tillage depths between 0 and 150 mm in an attempt to optimize the design, selection and utilization of mouldboard ploughs for animal traction in Kenya. It was found that depth of tillage is the most critical factor, and draught and suction increased significantly with depth while specific draught increased or decreased depending on the soil type. Draught and specific draught increased significantly with speed. The increase in suction with depth probably implies an increased stability in the ploughing operation, while its reduction with speed indicates a potential instability of plough control with varying speeds. Consequently, aiming for steady motion in the utilization of animal traction may aid in the optimization. It was also found that ploughs with a high specific draught (kN/m) are expected to experience higher torsional loads on the shanks. The characteristic draught, specific draught and suction loads of the ploughs were described by quadratic functions in speed and depth of tillage with coefficients of determination (R2) ranging from 0.55 to 0.99. A significant difference in the coefficient of variation of draught loads in the three soil types probably implies that optimal duration for use of animal traction in tillage should be dependent on soil type.  相似文献   

3.
The present study describes the wall shear stress and the falling liquid film behavior in upward vertical slug flow of air and high viscosity oil. The frictional pressure gradient is directly related to the wall shear stress, and it is usually negative (opposite to the overall flow direction). However, in vertical slug flow, the average total wall shear stress of a slug unit may be negative (in the same direction of the overall flow), resulting in a positive frictional pressure gradient. However, this does not mean, by any way, generation of additional energy or violation of the second law of thermodynamics.The positive frictional pressure gradient phenomenon, reasons and required conditions were explained in this paper. A simplified model was developed and validated against recent experimental data of air-high viscosity oil slug flow in a 50.8 mm ID vertical pipe. The oil viscosity was in the range of 127 mPa s to 580 mPa s. Positive frictional pressure gradient appears when the liquid film wall shear stress supersede the wall shear stress in the slug body. The rate of increase of both wall shear stresses (with respect to the mixture Reynolds number) depend, not only, on the mixture Reynolds number but also, highly, on the liquid viscosity.  相似文献   

4.
A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas–solid flows in vertical pneumatic conveyor. An axisymmetric 2-dimensional, vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain, same to that used for experimentation in the literature. The chosen particles are spherical, of diameter 1.91 mm and density 2500 kg/m3. Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles. Flow regimes transition and pressure drop were predicted. Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe. It was found that the voidage has a minimum, and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime. Slug length and pressure fluctuation reduction were predicted with increasing gas velocity, too. It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition.  相似文献   

5.
Emissions from major agricultural residues were measured using a self-designed combustion system. Emission factors (EFs) of organic carbon (OC), elemental carbon (EC), and water-soluble ions (WSIs) (K+, NH4+, Na+, Mg2+, Ca2+, Cl, NO3, SO42–) in smoke from wheat and rice straw were measured under flaming and smoldering conditions. The OC1/TC (total carbon) was highest (45.8% flaming, 57.7% smoldering) among carbon fractions. The mean EFs for OC (EFOC) and EC (EFEC) were 9.2 ± 3.9 and 2.2 ± 0.7 g/kg for wheat straw and 6.4 ± 1.9 and 1.1 ± 0.3 g/kg for rice straw under flaming conditions, while they were 40.8 ± 5.6 and 5.8 ± 1.0 g/kg and 37.6 ± 6.3 and 5.0 ± 1.4 g/kg under smoldering conditions, respectively. Higher EC ratios were observed in particulate matter (PM) mass under flaming conditions. The OC and EC for the two combustion patterns were significantly correlated (p < 0.01, R = 0.95 for wheat straw; p < 0.01, R = 0.97 for rice straw), and a higher positive correlation between OC3 and EC was observed under both combustion conditions. WSIs emitted from flaming smoke were dominated by Cl and K+, which contributed 3.4% and 2.4% of the PM mass for rice straw and 2.2% and 1.0% for wheat straw, respectively. The EFs of Cl and K+ were 0.73 ± 0.16 and 0.51 ± 0.14 g/kg for wheat straw and 0.25 ± 0.15 and 0.12 ± 0.05 g/kg for rice straw under flaming conditions, while they were 0.42 ± 0.28 and 0.12 ± 0.06 g/kg and 0.30 ± 0.27 and 0.05 ± 0.03 g/kg under smoldering conditions, respectively. Na+, Mg2+, and NH4+ were vital components in PM, comprising from 0.8% (smoldering) to 3.1% (flaming) of the mass. Strong correlations of Cl with K+, NH4+, and Na+ ions were observed in rice straw and the calculated diagnostic ratios of OC/EC, K+/Na+ and Cl/Na+ could be useful to distinguishing crop straw burning from other sources of atmospheric pollution.  相似文献   

6.
Four tire types (A, block-shape tread; B, rib-shape tread; C, low-lug tread; D, high-lug tread) used to harvest and transport sugarcane were compared regarding the compaction induced to the soil. Tires were tested at three inflation pressures (207, 276, 345 kPa) and six loads ranging from 20 to 60 kN/tire. Track impressions were traced, and 576 areas were measured to find equations relating inflation pressure, load, contact surface and pressure. Contact surface increased with increasing load and decreasing inflation pressure; however, the contact pressure presented no defined pattern of variation, with tire types A and B generating lower contact pressure. The vertical stresses under the tires were measured and simulated with sensors and software developed at the Colombian Sugarcane Research Center (Cenicaña). Sensors were placed at 10, 30, 50 and 70 cm depth. Tire types A and B registered vertical stresses below 250 kPa at the surface. These two tires were better options to reduce soil compaction. The equations characterizing the tires were introduced into a program to simulate the vertical stress. Simulated and measured stresses were adjusted in an 87–92% range. Results indicate a good correlation between the tire equations, the vertical stress simulation and the vertical stress measurement.  相似文献   

7.
Momentum transfer from shock waves (SWs) of various intensity (from 0.05 MPa to 0.5 MPa in amplitude) to water containing air bubbles 2.5 to 4 mm of mean diameter is studied both experimentally and by means of numerical simulation. Experiments are performed in a vertical shock tube of a 50 × 100 mm2 rectangular cross section consisting of a 495-mm long high-pressure section (HPS), 495-mm long low-pressure section (LPS), and 990 mm long test section (TS) equipped with an air bubbler and filled with water. Experiments have shown that as the initial gas volume fraction in water increases from 0 to 0.3 the momentum imparted in bubbly water by SWs increases monotonically, gradually levelling off at an air volume fraction of about 0.30. The experimental data are confirmed by two-dimensional (2D) simulation of SW propagation in bubbly water in terms of the SW velocity versus the air content, pressure profiles, as well as liquid and gas velocity behind the shock front.  相似文献   

8.
The Large Eddy Simulation model was introduced to study the micro spray characteristics under ultra-high injection pressure (>220 MPa). EFS8400 spray test platform was set up to verify the accuracy of the numerical model. The mechanisms of micro spray characteristics were studied intensively under different injection pressures (180 MPa, 240 MPa) and nozzle diameters (0.1 mm, 0.16 mm). The results indicated that the micro turbulence vortex structures can be captured, especially in the liquid spray core area. Large Eddy Simulation model combined with the small grid size of 0.25 mm show a huge advantage in studying the micro spray characteristics under ultra-high injection pressure; The turbulence vorticity and spray velocity for injection pressure of 240 MPa are more intensive than that of 180 MPa, and also the ultra-high injection pressure can contribute to strong turbulence disturbance between spray and surrounding air, which is helpful to improve the quality of spray; The spray velocity field extended wider for the diameter of 0.16 mm, and also the values of velocity in the spray center is higher than that of the diameter of 0.1 mm; The entrainment vortex appeared at the edge of the large velocity gradient between spray and surrounding air, and the higher velocity gradient for ultra-high injection pressure (240 MPa) between the spray and air is easier to increase the generation of entrainment vortex in the downstream of the spray, which can significantly increase the quality of spray and atomization.  相似文献   

9.
An accurate estimation of the total pressure drop of a pipeline is important to the reliable design of a pneumatic conveying system. The present paper presents results from an investigation into the modelling of the pressure drop at a bend in the pneumatic conveying of fly ash. Seven existing bend models were used (in conjunction with solids friction models for horizontal and vertical straight pipes, and initial acceleration losses) to predict the total pipeline pressure drop in conveying fly ash (median particle diameter: 30 μm; particle density: 2300 kg/m3; loose-poured bulk density: 700 kg/m3) in three test rigs (pipelines with dimensions of 69 mm inner diameter (I.D.) × 168 m length; 105 mm I.D. × 168 m length; 69 mm I.D. × 554 m length). A comparison of the pneumatic conveying characteristics (PCC) predicted using the seven bend models and experimental results shows that the predicted total pipeline PCC and trends depend on the choice of bend model. While some models predict trends that agree with the experimental results, other models predicted greater bend pressure drops for the dense phase of fly ash than for the dilute phase. Models of Pan, R. (1992). Improving scale-up procedures for the design of pneumatic conveying systems. Doctoral dissertation, University of Wollongong, Australia, Pan, R., & Wypych, P.W. (1998). Dilute and dense phase pneumatic conveying of fly ash. In Proceedings of the sixth International Conference on Bulk Materials Storage and Transportation (pp. 183–189), Wollongong, NSW, Australia and Chambers, A.J., & Marcus, R.D. (1986). Pneumatic conveying calculations. In Proceedings of the second International Conference on Bulk Materials Storage and Transportation (pp. 49–52), Wollongong, Australia reliably predicted the bend losses for systems conveying fly ash over a large range of air flows.  相似文献   

10.
A smooth steel roller was tested in an indoor soil bin. Subsoil forces and displacements were measured at depths of 50, 100, 150, and 200 mm. Roller operating conditions included roller travel speed, the vertical load, and number of passes. Three travel speeds, 1, 3, and 5 km h?1 and three vertical loads 20, 40, and 60 kN were tested. The draft needed to move the roller was also recorded. For multiple passes, subsoil forces were increased by 30% if vertical load increased by 50%; while the roller draft increased by 20%. For a single pass, no significant differences detected between the subsoil forces at speeds of 1 and 3 km h?1; when the roller traveled at 5 km h?1 with a vertical load of 60 kN, the subsoil force was approximately reduced by 30% compared to those at lower travel speeds. For both single and multiple passes, increasing travel speed did not significantly increase subsoil forces and displacement below 150-mm depth; however, the power required to drive the roller was significantly increased. Higher travel speed was more effective in creating larger subsoil displacement and subsoil forces within 100-mm from the soil surface. For similar effects below 100-mm, lower travel speed was found appropriate.  相似文献   

11.
The variation of natural convection heat transfer from an isothermal horizontal cylinder confined between two adiabatic walls of constant height is investigated by Mach-Zehnder interferometry technique. This paper focuses on the chimney effect due to the vertical position changes of cylinder (Y) located between two walls with a constant distance of W measuring 1.5 cylinder diameter. The cylinder’s local and average Nusselt numbers are determined for ratio of vertical position to its diameter ranging from Y/D = (0 to 10), and the Rayleigh number ranging from 3.5 × 103 to 1.4 × 104. There is an optimum distance between the walls in which the Nusselt number is maximum. Results are indicated with a single correlation which gives the average Nusselt number as a function of the ratio of vertical position to cylinder diameter and the Rayleigh number. The experimental data shows that there is an optimum vertical position for the cylinder at which the Nusselt number has a maximum value at each Rayleigh number. This optimal vertical position is derived from the correlation and is presented by an equation. The value of the optimum vertical position increases as the Rayleigh number increases.  相似文献   

12.
《Journal of Terramechanics》2004,41(2-3):139-149
The approach used here consists of an axisymmetric gage with a tapered exterior. Raw outputs are normal stress in three directions in the plane perpendicular to the gage axis of symmetry. From these outputs, the time history of the complete state of stress in this plane can be determined. Of special interest is the plane of symmetry which is the vertical plane centered on one side of a wheeled or tracked vehicle proceeding in a straight line. The gage was placed from a berm on the side of the vehicle path, approximately 4 ft horizontally and at approximately 9 in. below the ground surface. Test vehicles were a 4 × 4 wheeled vehicle and a M113A2 armored personnel carrier. The measured stress results are largely consistent with expectations.  相似文献   

13.
Nanomesh graphene (NMG) obtained by template chemical vapor deposition was used to synthesize the binder-free graphene monoliths by simple tablet pressing. The stacking manner of the NMG sheets was crucial to the cohesion interaction between the graphene sheets, only the NMG materials with a loosely stacking manner could be pressed into binder-free monoliths. At the tableting pressure of 2–8 MPa, both the bulk densities and the specific surface areas of the monoliths keep nearly constant as the tableting pressure increases, indicating that the NMG monoliths have obvious elasticity and a porous structure due to the large corrugations and the mesh structures of the graphene sheets. As a result, an extraordinary methane storage capacity of 236 (v/v) at 9 MPa was obtained in the graphene monolith prepared by tableting at 4 MPa.  相似文献   

14.
Zirconia (yttria)–alumina ceramic nanocomposites were fabricated from different powders by spark plasma sintering (SPS). One powder was a commercially available nanocomposite powder TZP-3Y20A, consisting of 3 mol% yttria-stabilized zirconia (3-YSZ) reinforced with 20 wt% alumina, and the other, used as a comparison, was a conventional mechanically mixed powder 3YSZ-20A, a blend made of 3 mol% yttria-stabilized zirconia powder ZrO2 (3Y) and 20 wt% α-alumina powder. The effect of the sintering temperature on the densification, the sintering behavior, the mechanical properties and the microstructure of the composites was investigated. The results showed that the density increased with increasing sintering temperature, and thus, the mechanical properties were strengthened because of the increased densification. The nanocomposite powder TZP-3Y20A was easily sintered, and good mechanical properties were achieved as compared with the powder from the conventional mechanically mixed method, the maximum flexural strength and fracture toughness of which were 967 MPa and 5.27 MPa m1/2, respectively.  相似文献   

15.
The present study investigated experimentally the heat transfer from a heat source simulating an electronic chip mounted on a printed circuit board placed downstream of a guide fence on the lower wall of the flow passage with two different aspect ratios (H/W = 0.3 and 1). The channel height to the heat source height ratios (H/B) are of 10 and 3. The effect of the guide fence height (b) and the spacing between the guide fence and the heat source (S) were investigated. The guide fence was orientated such that guide fence extension point was varied from the midpoint of the front face of the heat source to the endpoint of the side face at 5000 ? ReL ? 30,000. The results for the heat source without guide fence displayed noticeable difference when compared with the flow over smooth plate placed on the lower wall of the flow passage. An enhancement in the convective heat transfer coefficient up to 20% is obtained when decreasing the flow passage height to the heat source height ratio from 10 to 3. Also, higher Nusselt number is located at the front face and the vertical sides of the heat source compared with that of the top surface. Nusselt number increases with the increase in both Reynolds number and the guide fence height while the effect of spacing between the guide fence and the heat source depending on the guide fence height. Correlations for the average Nusselt number were obtained utilizing the present measurements within the investigated range of the different parameters.  相似文献   

16.
The mechanical strength of solid catalysts is considered an important factor in terms of ensuring the reliable performance of industrial reactors. In this work, a pelletizing method was used to form gamma alumina support for catalysts. Response surface methodology (RSM) was employed to analyze and model the effects of various manufacturing parameters on the crushing strength of the supports. These parameters were binder concentration, compaction pressure, calcination temperature, and drying mode. The suggested model was verified by applying an analysis of variance to assess its validity with regard to crushing strength. The mechanical reliability of various supports was also determined by calculating their Weibull modulus values through linear regression of the Weibull equation. The material with the highest mechanical strength reliability will have both a high mean crushing strength and a high Weibull modulus, and the best values obtained for a support in this work were 70.7 MPa and 6.63, respectively. The conditions used to form this sample were: 20 mass% binder concentration, 861 MPa compaction pressure, 466 °C calcination temperature, and gentle drying.  相似文献   

17.
A computational fluid dynamics (CFD) model is used to investigate the hydrodynamics of a gas–solid fluidized bed with two vertical jets. Sand particles with a density of 2660 kg/m3 and a diameter of 5.0 × 10?4 m are employed as the solid phase. Numerical computation is carried out in a 0.57 m × 1.00 m two-dimensional bed using a commercial CFD code, CFX 4.4, together with user-defined Fortran subroutines. The applicability of the CFD model is validated by predicting the bed pressure drop in a bubbling fluidized bed, and the jet detachment time and equivalent bubble diameter in a fluidized bed with a single jet. Subsequently, the model is used to explore the hydrodynamics of two vertical jets in a fluidized bed. The computational results reveal three flow patterns, isolated, merged and transitional jets, depending on the nozzle separation distance and jet gas velocity and influencing significantly the solid circulation pattern. The jet penetration depth is found to increase with increasing jet gas velocity, and can be predicted reasonably well by the correlations of Hong et al. (2003) for isolated jets and of Yang and Keairns (1979) for interacting jets.  相似文献   

18.
This paper presents a numerical study of the conjugate heat transfer (natural convection, surface thermal radiation and conduction) in a square cavity with turbulent flow. The cavity has one vertical isothermal wall, two horizontal adiabatic walls and one vertical semitransparent wall with a selective coating applied to the inner side to control the solar radiation transmission. Later on the semitransparent wall is replaced with another one without the selective coating. The mathematical model for the turbulent flow in the cavity was solved using the finite volume method. The system had the following conditions: the uniform temperature in the isothermal wall was 21 °C, the external ambient temperature was fixed at 35 °C and on the semitransparent wall the direct normal solar irradiation of 750 W/m2 was considered constant. The Rayleigh number was varied in the range of 109 ? Ra ? 1012 by changing the lengths of the cavity from 0.70 m to 6.98 m, respectively. The results show that, even though the air temperature of the cavity with the solar control film coating semitransparent wall (case A) is higher compared with the one without solar film coating (case B), the total amount of heat going through the cavity is lower compared to the one going through the cavity without solar control film. The total amount of energy transferred to the air in cavity for the case A was 41.98% less than for the case B. A set of correlations for the Nusselt number was obtained for both cases considering the conjugate heat transfer.  相似文献   

19.
A fundamental step in the production of an industrial catalyst is its crushing strength assessment. Limited literature exists in which the strength reliability of supported catalysts is investigated from production to their application in a reactor. In this work, cylindrical supports were prepared by pelletizing high porosity γ-alumina powder, and Cu–Zn/γ-Al2O3 catalysts were prepared by impregnation of the pelletized γ-alumina supports with an aqueous solution of copper and zinc nitrates. The support-forming variables, such as binder concentration, compaction pressure, calcination temperature, and drying procedure were investigated. The Weibull method was used to analyze the crushing strength data of the supports, and the fresh and used catalysts before and after the low-temperature water gas shift reaction. Support formation at a 50 wt% binder concentration, 1148 MPa compaction pressure, 500 °C calcination temperature, and rapid drying (100 °C, 8 h) led to the maximum support mechanical reliability. The most reliable catalyst with respect to simultaneous appropriate catalytic performance and mechanical strength was prepared from a support with the lowest mean crushing strength (26.25 MPa). This work illustrates the importance of the Weibull modulus as a useful mechanical reliability index in manufacturing a supported solid catalyst.  相似文献   

20.
The characteristics of the stress fields around a singular point on the stress singularity line of dissimilar materials in three-dimensional joints are investigated using BEM. Contour for the order of stress singularity around the point is mapped on Dundurs’ parameters plane using eigen value analysis by FEM. The results in 3D joints are compared with those in 2D joints having the same cross section and material combination. The order of stress singularity around the singular point on the stress singularity line in 3D joints is almost identical with that in 2D joints in the singularity region. However, the zero boundary of singularity in 3D joints is slightly different from that in 2D joints. Furthermore, the multiple root of p = 1 exists in the eigen value analysis by FEM. Therefore, logarithmic singularity possibly occurs around the singular point on the stress singularity line. Then, the stress distributions around this point are expressed by the combination of the rλ term and logarithmic singularity terms. Finally, the characteristics of the stress intensity factors of the rλ term and logarithmic singularity terms around the singular points are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号