首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
A simple and facile route is developed for the preparation of mesoporous titanium nitride (TiN) microspheres with a large surface area and a highly porous structure. This method involves the preparation of an amorphous precursor via a solvothermal reaction and subsequent short-time nitridation process to mesoporous TiN. X-ray diffraction and X-ray photoelectron spectroscopy analyses confirm the composition of the resultant sample. The mesoporous structure of the as-prepared TiN sample has been studied by nitrogen adsorption/desorption measurement. The surface area obtained by the Brunauer–Emmett–Teller method is 50.6 m2 g−1 and the pore sizes are in the range of 2.0–4.0 nm. In addition, the obtained sample is evaluated as a new sorbent for Cd2+ removal. Experimental parameters such as solution pH, contact time and concentration of adsorbate are optimized. The maximum adsorption capacity for Cd2+ removal is found to be 12.40 mg g−1 and it is a potentially attractive adsorbent for Cd2+ removal from aqueous solution.  相似文献   

2.
B-Fe3O4@C core–shell composites were synthesized via one-pot hydrothermal carbonization (HTC) process and used as an adsorbent for the removal of methylene blue (MB) from aqueous solution. By using sodium borate as the catalyst, the hydrothermal carbonization process of B-Fe3O4@C core–shell composites was optimized and a higher surface area was obtained. The adsorbent was characterized by XRD, Raman spectra, SEM, TEM and N2 adsorption/desorption isotherms. We studied the dye adsorption process at different conditions and analyzed the data by employing the Langmuir and Freundlich models, and the equilibrium data fitted well with both models. Kinetic analyses were conducted by using the Lagergren pseudo-first-order and pseudo-second-order model and the results showed that the adsorption process was more consistent with the pseudo-second-order kinetics. To better understand the dye adsorption process from the thermodynamics perspective, we also calculated ΔHο, ΔSο, ΔGο and Ea, the results suggesting that the MB adsorption process was physisorption endothermic process, and spontaneous at room temperature. The as-synthesized B-Fe3O4@C showing high magnetic sensitivity provides a facile and efficient way to recycle from aqueous solution.  相似文献   

3.
Spent grain, a main by-product of the brewing industry, is available in large quantities, but its main application has been limited to animal feeding. Nevertheless, in this study, spent grain modified with 1 M NaCl solution as a novel adsorbent has been used for the adsorption of Pb(II) in aqueous solutions. Isotherms, kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain were studied. The equilibrium data were well fitted with Langmuir, Freundlich and Dubinin-Radushkevick (D-R) isotherm models. The kinetics of Pb(II) adsorption followed pseudo-second-order model, using the rate constants of pseudo-second-order model, the activation energy (Ea) of Pb(II) adsorption was determined as 12.33 kJ mol−1 according to the Arrhenius equation. Various thermodynamic parameters such as ΔGads, ΔHads and ΔSads were also calculated. Thermodynamic results indicate that Pb(II) adsorption onto modified spent grain is a spontaneous and endothermic process. Therefore, it can be concluded that modified spent grain as a new effective adsorbent has potential for Pb(II) removal from aqueous solutions.  相似文献   

4.
We report on aqueous Cu2+ uptake by Ni-Al layered double hydroxides (Ni-Al LDHs) modified with citrate (C6H5O73−), malate (C4H4O52−), and tartrate (C4H4O62−) anions via coprecipitation. Dropwise addition of a mixed aqueous solution of Ni(NO3)2 and Al(NO3)3 to the respective organic acid solutions at a constant pH of 7.0-9.0 afforded LDHs with intercalated C6H5O73− and Ni(C6H5O7)−, C4H4O52−, and C4H4O62− in their interlayers. The anions were also likely adsorbed on the LDH surface. Citrate·Ni-Al LDH could rapidly take up Cu2+ at a constant pH of 5.0, mainly via chelation by the intercalated and adsorbed anions, rather than coprecipitation with dissolved Al3+ to form Cu-Al LDH. By contrast, malate and tartrate were not active as chelating agents, probably because they formed bridges between brucite-like layers by direct coordination of the two −COO groups with Al3+ in those layers.  相似文献   

5.
Vermiculite of general formula [Si6.85Al1.15][Mg4.68Al0.51Fe0.63]O20(OH)4Ca0.128Na0.032K0.094 reacted with heteroaromatic amines α-, β-, and γ-picolines from aqueous solution. The products were characterized by elemental analysis, infrared spectroscopy, and X-ray diffraction. The intercalated nanocompounds maintained the crystallinity and changed the original interlayer distance of 1422 pm to 1474, 1456, and 1474 pm, for the sequence of the guest picoline molecules. Natural and intercalated vermiculite can remove copper at the solid/liquid interface; removal 0.40 mmol g−1 was obtained for the original matrix, and 1.10, 0.92, and 1.33 mmol g−1 for the intercalated forms. These values are near the capacity of cation exchange (CEC) of this clay mineral, which can be possibly used as source of copper removal from aqueous solution.  相似文献   

6.
Kaolinite clay was tested for removal of lead ions from aqueous solution. This clay was washed with sulfuric acid solution followed by chemical surface modification using 3-chloropropyltriethoxysilane and sodium hydroxide. XRF results showed that silica to alumina ratio was 2.8:1 for the treated sample compared to 1.6:1 for the raw one.XRD analysis displayed different distinct kaolinite and quartz peaks before treatment while kaolinite peaks were diminished after the treatment. SEM morphology indicated that the raw kaolinite appears as plate structure with no local pores on the plates. However, after treatment the surface was found to have micropores.Different adsorption isotherm models were applied to the experimental data and found that Shawabkeh-Tutunji equation best fit these data adequately. It was also found that chemisorption took place at the surface of the modified kaolinite with maximum adsorption capacity of 54.35 mg/g.  相似文献   

7.
New layered magnesium hydroxides whose brucite layers had been bridged with malate2− and tartrate2− were prepared by dropwise addition of Mg(NO3)2 to malate and tartrate solutions at a constant pH of 10.5. Malate2− and tartrate2− may have been also absorbed on the surfaces of hydroxides. In the case of using citrate solution, Mg(OH)2 absorbed with citrate3− was produced. These materials were found to take up Cu2+ rapidly from an aqueous solution at pH 5.0. Copper uptake by precipitates is attributed to the formation of chelate complexes of Cu2+ with citrate3−, malate2−, and tartrate2−.  相似文献   

8.
In the study, the layered double hydroxide (LDH) of NiZnFe and its composites with date-palm biochar (LDH-DPb) and carbon nanotubes (LDH-cnt) were synthesized for adsorbing reactive black 5 (RB5) dye from aqueous solutions. In the first 5 min, rapid adsorption was followed by a gradual increase in both dye uptake and removal efficiency of up to 60 min of starting time. In the investigated pH range (3.0–8.0), the removal efficiency linearly decreased while the sorption capacity linearly increased for all three adsorbents as their doses increased to 0.3 or 0.4 g following a decreasing trend up to 0.6 g. By increasing the initial RB5 concentration from 10 to 100 mg L−1, the removal efficiency linearly decreased. A nearly perfect fitting of the pseudo-second-order kinetic model to the adsorption data was observed; however, the Elovich kinetic model showed the heterogeneous surface of adsorbents with chemisorption. At the solid–liquid interface, from a thermodynamics point of view, we obtained the nonspontaneous nature of the adsorption of RB5 dye of the studied adsorbents with an increased disorder, which supported the endothermic nature onto the studied adsorption process. Furthermore, a nearly perfect fitting of the Langmuir model was obtained to the adsorption data, thereby suggesting the monolayer adsorption of RB5 dye onto the studied adsorbents. In the Dubinin–Radushkevich model, a good agreement of the calculated adsorption capacities to the experimental values were observed and the chemical adsorption of RB5 dye on to the studied adsorbents was proposed based on E (8 – 16 kJ mol−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号