首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The copolymerization activity and sequence structure of the typical neutral polymer bonding agent (NPBA) for improving the mechanical properties of a composite solid propellant plasticized by nitrate ester were investigated. The reactivity ratios of three monomers were calculated and compared. In addition, by using Monte Carlo simulation, the effects of the monomers’ feed amount on composition and sequence structure of the copolymer were also investigated and discussed. The prepared NPBA bonding agents were used in a propellant. It was found that the results of the mechanical properties tests have good correspondence with the data of reactivity ratios and Monte Carlo simulation.  相似文献   

2.
The design of boronic acid sensors for photometric detection of carbohydrates has relied on exploiting differences in the thermodynamic stability of complex formation for molecular recognition. Herein, we introduce a direct method for analysis of sugar alcohols using 3-nitrophenylboronic acid (NPBA) as an electrokinetic probe in capillary electrophoresis (CE). Dynamic complexation of neutral polyols by NPBA during electromigration allows for their simultaneous resolution and UV detection based on formation of an anionic ternary boronate ester complex in phosphate buffer. Unlike conventional boronic acid sensors, thermodynamic and electrokinetic processes in CE allow for improved selectivity for the resolution of sugar alcohol stereoisomers having different vicinal polyol chain lengths even in cases when binding affinity is similar due to differences in their complex mobility. Three complementary approaches were investigated to compare the thermodynamics of polyol chelation with NPBA, namely direct binding assays by CE, UV absorbance spectroscopy and an indirect pK a depression method. Overall, CE offers a convenient platform for characterization of reversible arylboronic acid interactions in free solution while allowing for direct analysis of complex mixtures of neutral/UV-transparent polyols without complicated sample handling.  相似文献   

3.
We report the supramolecular chemistry of several metal complexes of N-(4-pyridyl)benzamide (NPBA) with the general formula [Ma(NPBA)2AbSc], where M = Co2+, Ni2+, Zn2+, Mn2+, Cu2+, Ag+; A = NO3-, OAc-; S = MeOH, H2O; a = 0, 1, 2; b = 0, 1, 2, 4; and c = 0, 2. NPBA contains structural features that can engage in three modes of intermolecular interactions: (1) metal-ligand coordination, (2) hydrogen bonding, and (3) pi-pi stacking. NPBA forms one-dimensional (1-D) chains governed by hydrogen bonding, but when reacted with metal ions, it generates a wide variety of supramolecular scaffolds that control the arrangement of periodic nanostructures and form 1- (2-4), 2- (5), or 3-D (6-10) solid-state networks of hydrogen bonding and pi-pi stacking interactions in the crystal. Isostructural 7-9 exhibit a 2-D hydrogen bonding network that promotes topotaxial growth of single crystals of their isostructural family and generates crystal composites with two (11) and three (12) different components. Furthermore, 7-9 can also form crystalline solid solutions (M,M')(NPBA)2(NO3)2(MeOH)2 (M, M' = Co2+, Ni2+, or Zn2+, 13-16), where mixtures of Co2+, Ni2+, and Zn2+ share the same crystal lattice in different proportions to allow the formation of materials with modulated magnetic moments. Finally, we report the effects that multidimensional noncovalent networks exert on the magnetic moments between 2 and 300 K of 1-D (4), 2-D (5), and 3-D (7, 8, 10, and 13-16) paramagnetic networks.  相似文献   

4.
Single-walled carbon nanotubes (SWNTs) have been chemically attached with high density onto a patterned substrate. To form the SWNT pattern, the substrate was treated with acid-labile group protected amine, and an amine prepattern was formed using a photolithographic process with a novel polymeric photoacid generator (PAG). The polymeric PAG contains a triphenylsulfonium salt on its backbone and was synthesized to obtain a PAG with enhanced efficiency and ease of spin-coating onto the amine-modified glass substrate. The SWNT monolayer pattern was then formed through the amidation reaction between the carboxylic acid groups of carboxylated SWNTs (ca-SWNTs) and the prepatterned amino groups. A high-density multilayer was fabricated via further repeated reaction between the carboxylic acid groups of the ca-SWNTs and the amino groups of the linker with the aid of a condensation agent. The formation of covalent amide bonding was confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Scanning electron microscopy and UV-vis-near-IR results show that the patterned SWNT films have uniform coverage with high surface density. Unlike previously reported patterned SWNT arrays, this ca-SWNT patterned layer has high surface density and excellent surface adhesion due to its direct chemical bonding to the substrate.  相似文献   

5.
Porous organic-inorganic hybrids of poly(n-butyl acrylate) (PBA) and silica were synthesized with different polymer contents via sol-gel process. With the aim of controlling interfacial properties in hybrids, the bonding agent 3-methacryloxypropyl-trimethoxysilane (MPTS) was copolymerized with n-butyl acrylate (BA) at different proportions. Copolymers P(BA-co-MPTS) and hybrids obtained were characterized by infrared spectroscopy and thermogravimetric analysis. Nitrogen sorption analyses of hybrids determined that the increase in polymer content leads to the formation of non-porous hybrids only if bonding agent content is sufficiently large. Otherwise, hybrids with large pore volumes and sizes, nearly reaching macropore range, are obtained even for polymer content as high as 45% in the absence or low content of MPTS. Scanning electron microscopy images showed that the addition of bonding agent changes the aspect of hybrid surface from rough, with loosely bound particles with a few hundreds nanometers, to relatively smooth, with particles typically smaller than 100 nm. These results were explained considering that a more homogeneous medium provided by the presence of MPTS may lead to easier condensation of PBA-silica particles due to the smaller polymeric domains. This idea is supported by the fact that, after polymer degradation, smaller uniform-sized pores arise for hybrids with larger bonding agent contents.  相似文献   

6.
In this study, boric acid (BA) is employed as a crosslinking agent to improve the characteristics of two commonly used polymeric films, ethyl cellulose (EC) and polyvinyl alcohol (PVA), for topical drug delivery applications. The developed films are characterized by FTIR spectroscopy and SEM analysis. The results show that the surfaces of the prepared films are even and transparent, except for the BA-modified EC sample. The initial cumulative release for erythromycin (EM) is found to be 0.30 and 0.36 mg/mL for EC and PVA films, which drops to 0.25 and 0.20 mg/mL after BA crosslinking, respectively, after 1 h at 25 °C. Further, the developed formulations are stable for 75 days. Also, the antibacterial activity of the developed formulations is investigated against S. aureus (ATCC® 25923™ and ATCC® 29213™). The obtained data confirm that the application of BA as the crosslinking agent extends the release of EM from EC and PVA polymeric films. The findings of this study suggest that BA-crosslinked EC and PVA films are promising carriers for controlled topical drug delivery applications.  相似文献   

7.
N-Methylol dimethylphosphonopropionamide (MDPA), known as “Pyrovatex CP” and “Pyrovatex CP New” commercially, has been one of the most commonly used durable flame retardant agents for cotton for many years. In our previous research, we developed a flame retardant finishing system for cotton based on a hydroxy-functional organophosphorus oligomer (HFPO) in combination with a bonding agent such as trimethylolmelamine (TMM) and dimethyloldihydroxyethyleneurea (DMDHEU). In this research, we investigated the bonding of these two flame retardant finishing agents to cotton. We found that the majority of MDPA is bound to cotton by its N-methylol group and that the use of TMM as a co-reactant modestly increases the fixation of MDPA onto cotton. For HFPO, however, the use of a bonding agent is necessary to form a covalent linkage between HFPO and cotton. Both the fixation of HFPO on cotton and its laundering durability are influenced by the effectiveness and concentration of the bonding agent. The commercial product of HFPO contains approximately 33% more phosphorus than that of MDPA and the percent fixation of HFPO on cotton is also moderately higher than that of MDPA. The bonding between MDPA and cotton is significantly more resistant to hydrolysis during multiple launderings than that between HFPO and cotton. The selection of catalyst also plays a significant role in influencing the bonding of the flame retardant agents to cotton.  相似文献   

8.
Nanostructured amino acid containing poly(amide-imide) (PAI) was synthesized from the direct polycondensation reaction of 2–(3,5–diaminophenyl)–benzimidazole and N,N′–(pyromellitoyl)–bis–phenylalanine diacid under green condition by using tetrabutylammonium bromide as molten ionic liquid. Field emission scanning electron microscopy images show that the average diameter of polymeric nanoparticles with spherical shape was around 20–35 nm. In the next step, these polymeric nanoparticles were used as nano-fillers for reinforcement of poly(vinyl alcohol) (PVA) for the first time. Bionanocomposite of PVA and various compositions of PAI nanoparticles were produced through ultrasound-assisted technique. Fourier transform infrared spectroscopy, x-ray diffraction, field emission scanning electron microscopy, and thermogravimetric analysis were utilized to characterize the obtained hybrid materials, morphology, and properties. Results of thermal properties indicated that the thermal stability is enhanced. The improvement of thermal properties was attributed to the homogeneous and good dispersion of PAI nanoparticles in the PVA matrix and the strong hydrogen bonding between O–H groups of PVA and the carbonyl of amide and imide groups of the used PAI nanoparticles.  相似文献   

9.
A novel series of organic/inorganic/polymeric hybrid materials have been constructed from covalently bonding rare earth complexes into the inorganic matrix and polymer backbone. Among functional linkage, 3-chloropropyltrimethoxysilane is used to modify the hydroxyl group of p-hydroxycinnamic acid via substitution reaction to form the precursor, and the precursor is subsequently used to covalently bonding to acrylic acid, methyl acrylate, and vinyltriethoxysilane, respectively, through copolymerization reaction to form the organic/inorganic/polymeric network. In addition, we introduce the monomer 1,10-phenanthroline as the second reagent ligand for constructing the ternary luminescent hybrid material systems (abbreviated as HC-PMA-RE, HC?=?p-hydroxycinnamic acid and 3-chloropropyltrimethoxysilane). The physical characterization and especially the photoluminescence property of ternary system are studied in detail, which present the regular microstructure and characteristic photoluminescence.  相似文献   

10.
Multi-drug resistant pathogens are a rising danger for the future of mankind. Iodine (I2) is a centuries-old microbicide, but leads to skin discoloration, irritation, and uncontrolled iodine release. Plants rich in phytochemicals have a long history in basic health care. Aloe Vera Barbadensis Miller (AV) and Salvia officinalis L. (Sage) are effectively utilized against different ailments. Previously, we investigated the antimicrobial activities of smart triiodides and iodinated AV hybrids. In this work, we combined iodine with Sage extracts and pure AV gel with polyvinylpyrrolidone (PVP) as an encapsulating and stabilizing agent. Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-Vis), Surface-Enhanced Raman Spectroscopy (SERS), microstructural analysis by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-Ray-Diffraction (XRD) analysis verified the composition of AV-PVP-Sage-I2. Antimicrobial properties were investigated by disc diffusion method against 10 reference microbial strains in comparison to gentamicin and nystatin. We impregnated surgical sutures with our biohybrid and tested their inhibitory effects. AV-PVP-Sage-I2 showed excellent to intermediate antimicrobial activity in discs and sutures. The iodine within the polymeric biomaterial AV-PVP-Sage-I2 and the synergistic action of the two plant extracts enhanced the microbial inhibition. Our compound has potential for use as an antifungal agent, disinfectant and coating material on sutures to prevent surgical site infections.  相似文献   

11.
Anshuman Mangalum 《Tetrahedron》2009,65(22):4298-7704
Phosphotriesterase models incorporating di(2-picolyl)amino ligands supported by m-xylylene or 2-hydroxy-m-xylylene scaffolds have been tethered to the periphery of a water-soluble hyperbranched polyglycerol (PG). In aqueous solution buffered at pH 7.4, the polymeric complexes of Zn2+ are useful receptors for polymeric indicator displacement assays for phosphate and pyrophosphate employing commercial complexometric indicators. Under the same conditions, the Co3+ effectively hydrolyze p-nitrophenylphosphate with approximately five orders of magnitude rate enhancement versus uncatalyzed hydrolysis. These systems offer promising results as mixed-metal dual detect-decontaminate materials for organophosphorus toxins under mild, neutral aqueous conditions.  相似文献   

12.
The interactions between oxidised tantalum and methylene diphenyl diisocyanate (MDI) have been investigated by X-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS). Thin (approximately 2 nm) and thick layers of polymeric MDI were deposited on tantalum; one set was cured at 200°C, the other dried at ambient temperature (20°C). The thick layers serve as a characteristic pMDI layer, and thin layers contain information relating to the nature of interfacial bonding. By careful fitting of the N1s region contributions relating to interfacial bonding have been established. All spectra show an Nδ+ contribution indicative of acid–base bonding; in the case of the thick films, this is of an intermolecular nature whereas in the thin films, the more intense contribution is a result of such forces between pMDI and substrate. This is confirmed by ToF-SIMS. A lower binding energy component at ca 396 eV on the air-dried thin layer of pMDI is the result of a formal reaction between pMDI and tantalum yielding a nitride-like species in the N1s spectrum.  相似文献   

13.
Electrochemical characterization of two different samples of an activated membrane, which consists of a polymeric support containing different amounts of Di-(2-ethylhexyl) phosphoric acid as a carrier, was made by measuring the electrical resistance, salt diffusion and membrane potential for the activated membranes and the polymeric support in contact with NaNO3 solutions. Transport parameters such as the ion transport numbers and concentration of fixed charge in the membrane, salt and ionic permeabilities at different NaNO3 concentrations were obtained. A comparison of the different electrochemical parameters obtained with both activated membranes and the polymeric support shows how the carrier affects the transport of NaNO3 solutions across the activated membranes. On the other hand, chemical composition of the membrane surfaces as a function of the amount of carrier was determined by X-ray photoelectron spectroscopy technique, which also allows an envisagement of the chemical bonding between the carrier and the membrane top layer (polyamide).  相似文献   

14.
CO2 gas was used to construct novel types of supramolecular polymers. Self-assembling nanostructures 11 and 13 were prepared, which employ both hydrogen bonding and dynamic, thermally reversible carbamate bonds. As precursors, calixarene ureas 1 and 2 were synthesized, which strongly aggregate/dimerize (K(D)>/=10(6) M(-1) per capsule) in apolar solution with the formation of self-assembling capsules 7 and linear polymeric chains 8, respectively, and also possess "CO2-philic" primary amino groups on the periphery. CO2 effectively reacts with molecules 7 and 8 in apolar solvents and cross-links them with the formation of multiple carbamate salt bridges. Oligomeric aggregate 11 and three-dimensional polymeric network 13 were prepared and characterized by 1H and 13C NMR spectroscopy. The morphology of supramolecular gel 13 was studied by scanning electron microscopy. Addition of a competitive solvent destroyed the hydrogen bonding in assembling structures 11 and 13, but did not influence the carbamate linkers; carbamate salts 12 and 14, respectively, were obtained. On the other hand, thermal release of CO2 from 11 and 13 was easily accomplished (1 h, 100 degrees C) while retaining the hydrogen-bonding capsules. Thus, three-dimensional polymeric network 13 was transformed back to linear polymeric chain 8 without breaking up. Encapsulation and storage of solvent molecules by 11 and 13 was demonstrated. This opens the way for switchable materials, which reversibly trap, store, and then release guest molecules. A two-parameter switch and control over hydrogen bonding and CO2-amine adducts was established.  相似文献   

15.
The synthesis of new hosts specifically designed for the recognition of neutral guests bearing donor-acceptor hydrogen bonding groups is described. These hosts are characterized by the presence of two distinct binding region in close proximity: the rigid π-donor cavity and the H-bond donor N-methylene-N′-phenylureido group inserted onto the upper rim of the calix[4]arene skeleton. The binding abilities of these receptors were investigated toward a series of neutral ditopic organic molecules in CDCl3 solution by 1H NMR spectroscopy. The results obtained show that rigidity of the calix[4]arene apolar cavity is the control element in determining efficiency. In fact, compared with the more rigid 2, host 10, where the rigidity of the cone structure is maintained by hydrogen bonding of the OH of the lower rim, a decrease of efficiency of almost one order of magnitude was observed. The cooperative effect of the two binding region of host 2 was verified with different classes of ditopic guests. Good efficiency in the recognition of urea derivatives and dimethylsulfoxide was achieved.  相似文献   

16.
The free-radical bulk homopolymerization of styrene and n-butyl acrylate at 80°C mediated by dibenzyl trithiocarbonate, poly(styryl) trithiocarbonate, or poly(n-butyl acrylate) trithiocarbonate as reversible addition-fragmentation chain-transfer agents has been studied. It has been shown that the use of low-and high-molecular-mass reversible addition-fragmentation chain-transfer agents makes it possible to efficiently control the molecular-mass characteristics of polymers. In the case of styrene, the rate of polymerization slightly depends on the concentration of the addition-fragmentation chain-transfer agent. In contrast, for the polymerization of n-butyl acrylate, the rate significantly decreases with the concentration of the chain-transfer agent. Formation of radical intermediates during the polymerization of styrene and n-butyl acrylate mediated by trithiocarbonates has been studied by ESR spectroscopy. It has been demonstrated that the polymeric chain-transfer agents are efficient for the synthesis of block copolymers with the controlled block length.  相似文献   

17.
A smart polymeric composite carrier consisting of carboxylated chitosan grafted nanoparticles (CCGN) and bilaminated films with one alginate-Ca2+ mucoadhesive layer and one hydrophobic backing layer was developed as a novel carrier for peptide. Calcein, hydrophilic and hydrolytic degradative, was entrapped into CCGN as a model peptide and its release behavior was investigated. Morphology study showed a uniform distribution of CCGN in the homogeneous and porous hydrogel. CCGN was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size measurement, and ζ potential measurement. The composite carrier was characterized by differential scanning calorimetry (DSC), scanning electron microscope (SEM) and fluorescence microscopy. The carrier exhibited high mucoadhesive force and pH-sensitivity, in that release of the nanoparticles and the model peptide calcein were both restricted in acidic environment while a fast and complete release was achieved in neutral medium. Therefore, this novel carrier would be a promising candidate for hydrophilic peptide drugs via oral administration.  相似文献   

18.
The synthesis and X-ray structures of four neutral copper(II) complexes and one cationic complex incorporating bidentate alkyl N-(4-oxo-5,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl)imidocarbamate ligands are reported. The neutral complexes, which possess potential doublet (DA) hydrogen bonding motifs, form supramolecular structures based on synthons involving hydrogen bonding or phenyl embraces. The formation of sheets within the crystal through combination of these synthons, and the occurrence of guest molecules trapped in cavities between the sheets, are described. The cationic complex forms an extended hydrogen-bonded structure that incorporates nitrate ions. The structures of the five complexes are compared with others reported previously for complexes of related ligands.  相似文献   

19.
The present work reports the self-healing performance of the epoxy based polymeric nanocomposite coatings containing different concentrations (1 and 3 wt%) of talc nanoparticles (TNPs) modified with sodium nitrate (NaNO3), and a fixed amount (5 wt%) of urea-formaldehyde microcapsules (UFMCs) encapsulated with linseed oil (LO). The polymeric nanocomposites were developed, coated on polished steel substrates, and their structural, thermal, and self-healing characteristics were investigated using various techniques. The successful loading (~wt 10%) of NaNO3 into TNPs, which can be ascribed to the involvement of physio-chemical adsorption mechanism, is validated and proceeds without altering the TNPs parent lamellae structure. The performed tests elucidated that the self-release of the corrosion inhibitor (NaNO3) from TNPs is sensitive to the pH of the solution and immersion time. In addition, the release of the linseed oil (self-healing agent) from UFMCs in response to the external damage was found to be a time-dependent process. The superior self-healing and corrosion inhibition performance of the protective polymeric nanocomposites coatings containing 3 wt% TNPs and UFMCs/LO are proven using the electrochemical impedance spectroscopy (EIS) studies. A careful selection of smart carriers, inhibitor, and self-healing agent compatible with polymeric matrix has enabled to attain decent self-healing and convincing corrosion inhibition efficiency of 99.9% and 99.5%, respectively, for polymeric nanocomposites coatings containing 3 and 1 wt% TNPs, making them attractive for many industrial applications.  相似文献   

20.
IR spectra of phenol-Arn (PhOH-Arn) clusters with n=1 and 2 were measured in the neutral and cationic electronic ground states in order to determine the preferential intermolecular ligand binding motifs, hydrogen bonding (hydrophilic interaction) versus pi bonding (hydrophobic interaction). Analysis of the vibrational frequencies of the OH stretching motion, nuOH, observed in nanosecond IR spectra demonstrates that neutral PhOH-Ar and PhOH-Ar2 as well as cationic PhOH+-Ar have a pi-bound structure, in which the Ar atoms bind to the aromatic ring. In contrast, the PhOH+-Ar2 cluster cation is concluded to have a H-bound structure, in which one Ar atom is hydrogen-bonded to the OH group. This pi-->H binding site switching induced by ionization was directly monitored in real time by picosecond time-resolved IR spectroscopy. The pi-bound nuOH band is observed just after the ionization and disappears simultaneously with the appearance of the H-bound nuOH band. The analysis of the picosecond IR spectra demonstrates that (i) the pi-->H site switching is an elementary reaction with a time constant of approximately 7 ps, which is roughly independent of the available internal vibrational energy, (ii) the barrier for the isomerization reaction is rather low(<100 cm(-1)), (iii) both the position and the width of the H-bound nuOH band change with the delay time, and the time evolution of these spectral changes can be rationalized by intracluster vibrational energy redistribution occurring after the site switching. The observation of the ionization-induced switch from pi bonding to H bonding in the PhOH+-Ar2 cation corresponds to the first manifestation of an intermolecular isomerization reaction in a charged aggregate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号