首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three compounds with phenyl and pentafluorophenyl rings bridged by (CH2)3 and (CH2)2SiMe2 units were synthesized by hydrosilylation and C−C coupling reactions. Their solid‐state structures are dominated by intermolecular π stacking interactions, primarily leading to dimeric or chain‐type aggregates. Analysis of free molecules in the gas phase by electron diffraction revealed the most abundant conformer to be significantly stabilized by intramolecular π–π interactions. For the silicon compounds, structures characterized by σ–π interactions between methyl and pentafluorophenyl groups are second lowest in energy and cannot be excluded completely by the gas electron diffraction experiments. C6H5(CH2)3C6F5, in contrast, is present as a single conformer. The gas‐phase structures served as a reference for the evaluation of a series of (dispersion‐corrected) quantum‐chemical calculations.  相似文献   

2.
The present work aims at improving the barrier properties of high molecular weight Polyethylene/ graphene nanoplatelets (HMWPE/GnP) nanocomposites by aligning the embedded modified graphene nanoparticles in a magnetic field. Graphene nanoplatelets (GnP) were modified by magnetic Fe2O3 to produce Fe2O3-modified Graphene, GnP-mFe2O3. The magnetic properties of Fe2O3 were previously characterized by the vibrating sample magnetometer (VSM) method and resulting GnP-mFe2O3 nanoparticles were characterized by Fourier transform infrared (FTIR) analysis. HMWPE/GnP nanocomposites were prepared via melt mixing. The prepared nanocomposites were sheeted at high temperatures in a magnetic field using a hot press. The barrier properties of prepared films, HMWPE/GnP and HMWPE/GnP-mFe2O3 were characterized by carrying out a permeation to oxygen experiment as a function of GnP and GnP-mFe2O3 contents. A decrease in gas transmission rate (GTR) was observed for the samples after being subjected to the magnetic field compared to the non-treated sample. The results of differential scanning calorimetry (DSC) and field emission electron microscopy (FESEM) experiments confirmed the orientation of GnP-mFe2O3 nanoparticles in nanocomposites.  相似文献   

3.
《Polyhedron》1999,18(21):2775-2780
Triclinic crystals of bismuth(III) triple-decker phthalocyanine, Bi2Pc3, Pc=C32H16N82−, were grown directly by the reaction of Bi2Se3 with 1,2-dicyanobenzene at 220°C. The Bi2Pc3 molecule is centrosymmetric with the bismuth atoms located closer to the peripheral phthalocyaninato(2−) rings than to the central ring. Each bismuth(III) ion is connected by four N-isoindole atoms to the peripheral and by four N-isoindole to the central Pc ring with average distances of 2.333 and 2.747 Å, respectively. This indicates a stronger connection of Bi(III) to the peripheral saucer-shaped macrocyclic rings than to the central rings. The neighbouring phthalocyaninato(2−) moieties in the Bi2Pc3 molecule are separated by a distance of 3.101(5) Å. The central Pc ring is rotated by 36.4° with respect to the peripheral ones. Differences in Bi–N bond lengths are a result of interaction of the bismuth ion with peripheral and central rings as well as the repulsion forces between two bismuth ions in the same Bi2Pc3 molecule, which are separated by a distance of 3.839(2) Å. The crystal packing is characterized by a distance of 3.56 Å between Pc rings of neighbouring Bi2Pc3 molecules.  相似文献   

4.
The effect of the gas‐phase chemical potential on surface chemistry and reactivity of molybdenum carbide has been investigated in catalytic reactions of propane in oxidizing and reducing reactant mixtures by adding H2, O2, H2O, and CO2 to a C3H8/N2 feed. The balance between surface oxidation state, phase stability, carbon deposition, and the complex reaction network involving dehydrogenation reactions, hydrogenolysis, metathesis, water‐gas shift reaction, hydrogenation, and steam reforming is discussed. Raman spectroscopy and a surface‐sensitive study by means of in situ X‐ray photoelectron spectroscopy evidence that the dynamic formation of surface carbon species under a reducing atmosphere strongly shifts the product spectrum to the C3‐alkene at the expense of hydrogenolysis products. A similar response of selectivity, which is accompanied by a boost of activity, is observed by tuning the oxidation state of Mo in the presence of mild oxidants, such as H2O and CO2, in the feed as well as by V doping. The results obtained allow us to draw a picture of the active catalyst surface and to propose a structure–activity correlation as a map for catalyst optimization.  相似文献   

5.
Elimination of the arsenic (III) impurity AsF3 from anhydrous hydrogen fluoride has been demonstrated using a bench-scale apparatus (∼500 mL of HF), with a Ag(II) salt AgFAsF6 as a mediator. In this process, AsF3 is oxidized by AgFAsF6 to AsF5. In the next step, AsF5 is eliminated from HF by reaction with NaF. The oxidizer, AgFAsF6, is reduced to AgAsF6 which is regenerated to AgFAsF6 by F2 in HF at room temperature. This method can reduce the arsenic content in HF from a few hundred ppm to the industrially required level (<3 ppm). The results for three other methods (distillation, oxidation by F2 gas, and oxidation by K2NiF6) are reported and compared with the AgFAsF6 method in a preliminary examination (using ∼4 mL of HF).  相似文献   

6.
New polyimide-polyaniline hollow fibers were produced by dissolution of the polymers in NMP and dry/wet spinning of the resulting solution in a non-solvent (H2O). The morphology and thermal properties of the fibers, were examined by means of SEM and TGA, and FTIR spectroscopy was used for the study of their chemical structure. Permeability and selectivity measurements in different gases (He, H2, CH4, CO2, O2 and N2) were performed in order to evaluate the performance of the membrane in gas separation applications. The results indicate that the novel membrane is a well structured hollow fiber, thermally stable up to 500°. The introduction of polyaniline into the polyimide matrix, results in a great enhancement in fiber permeability (60-600 times) possibly due to increase of the total free volume due to the introduction of shorter polyaniline molecules in the matrix, allowing larger quantities of gases to pass through the composite membrane. Perm-selectivity ratios for the composite membranes H2/CH4, He/N2, H2/N2 and H2/CO2 were found lower by a factor of 6.4, 8.9, 7.7 and 1.47, respectively, compared to membranes produced using only polyimide. The opposite effect was observed for CH4/CO2 and N2/CO2 perm-selectivity ratios that showed an increase by a factor of 3.52 and 5.2, respectively. The ratio CH4/CO2 is of particular interest for natural gas purification purposes.  相似文献   

7.
This paper reports a study on the effect of Al2O3 nanoparticles on the adhesion strength of steel-glass/epoxy composite joints bonded by a two-component structural acrylic adhesive. The addition of Al2O3 nanoparticles to the two-component acrylic adhesive led to a remarkable enhancement in the shear and tensile strength of the composite joints. The shear and tensile strength of the adhesive joints increased by addition of Al2O3 up to 1.5 wt%, which decreased by further addition of the nanofiller. Introduction of the nanoparticles caused a reduction in the peel strength of the joints. DSC analysis revealed that the glass transition temperature (Tg) of the adhesives rose by increasing the nanofiller content. The advancing water contact angle was decreased for adhesives containing nanoparticles. SEM micrographs indicated good dispersions of the Al2O3 nanoparticles within the acrylic matrix in the specimens with up to 1.5 wt% Al2O3 and revealed that addition of nanoparticles altered the fracture morphology from smooth to rough fracture surfaces.  相似文献   

8.
The synthesis of the TiMgCl5(OOCCH2Cl) · (ClCH2COOC2H5)3 adduct, obtained by reacting TiCl4 with a solution of MgCl2 in dry ClCH2COOC2H5, is reported together with its molecular and crystal structure as determined by x-ray diffraction. The structure was solved by direct and Fourier methods and refined by least-squares techniques to R = 0.057 for 1318 independent observed reflections. Crystals are monoclinic, space-group P21/c, with 4 formula units in a unit-cell of dimensions a = 10.480(4), b = 19.641(9), c = 16.597(6) Å, β = 120.21(5)°. The titanium(IV) atom is octahedrally coordinated by five chlorine atoms and an oxygen atom of a OOCCH2Cl residue. The magnesium atom is similarly coordinated by two chlorine atoms, the carbonyl oxygen atoms of three ClCH2COOC2H5 molecules and an oxygen atom of the OOCCH2Cl residue. The two octahedra share an edge by a double chlorine bridge between the magnesium and the titanium atoms and are also connected by the COO group of the OOCCH2Cl residue. Changes in the configurations and dimensions with respect to the free acceptor and donor molecules are discussed.  相似文献   

9.
The charge state of the Pd surface is a critical parameter in terms of the ability of Pd nanocrystals to activate O2 to generate a species that behaves like singlet O2 both chemically and physically. Motivated by this finding, we designed a metal–semiconductor hybrid system in which Pd nanocrystals enclosed by {100} facets are deposited on TiO2 supports. Driven by the Schottky junction, the TiO2 supports can provide electrons for metal catalysts under illumination by appropriate light. Further examination by ultrafast spectroscopy revealed that the plasmonics of Pd may force a large number of electrons to undergo reverse migration from Pd to the conduction band of TiO2 under strong illumination, thus lowering the electron density of the Pd surface as a side effect. We were therefore able to rationally tailor the charge state of the metal surface and thus modulate the function of Pd nanocrystals in O2 activation and organic oxidation reactions by simply altering the intensity of light shed on Pd–TiO2 hybrid structures.  相似文献   

10.
A novel reaction‐based cross‐linked polymeric nanoprobe with a self‐calibrating ratiometric fluorescence readout to selectively detect H2O2 is reported. The polymeric nanoprobe is fabricated by using hydrophobic H2O2‐reactive boronic ester groups, crosslinker units, and environmentally sensitive 3‐hydroxyflavone fluorophores through a miniemulsion polymerization. On treatment with H2O2, the boronic esters in the polymer are cleaved to form hydrophilic alcohols and subsequently lead to a hydrophobic–hydrophilic transition. Covalently linked 3‐hydroxyflavones manifest the change in polarity as a ratiometric transition from green to blue, accompanied by a 500‐fold increase in volume. Furthermore, this nanoprobe has been used for ratiometric sensing of glucose by monitoring the H2O2 generated during the oxidation of glucose by glucose oxidase, and thus successfully distinguished between normal and pathological levels of glucose.  相似文献   

11.
A traditional TG apparatus was modified by placing two permanent magnets producing a controlled magnetic field (TG(M): Magneto Thermogravimetry). This technique proved to be useful to study both structural relaxation and crystallisation of ferromagnetic metallic glasses. Results obtained for the amorphous alloys Fe40Ni40P14B6 and Fe62.5Co6Ni7.5Zr6Nb2Cu1B15, are reported in this paper. Structural relaxation can be evaluated by measuring changes in Curie temperature induced by thermal treatments. Crystallisation in TG(M) is detected through a change in the measured apparent mass (difference between the sample mass and magnetic force driving it upward). These results were confirmed by DSC analysis. Whether the obtained crystalline phase is ferromagnetic, it can be identified through its Curie temperature, measured by TG(M). In fact the value of 770°C measured as Curie temperature of crystallised Fe62.5Co6Ni7.5Zr6Nb2Cu1B15led to conclude that the only ferromagnetic crystalline phase is a-Fe. These hypothesis was confirmed by XRD analysis, showing that the first crystallisation yields to a-Fe nanocrystals. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Topological crystalline insulators (TCIs) are a new quantum state of matter in which linearly dispersed metallic surface states are protected by crystal mirror symmetry. Owing to its vanishingly small bulk band gap, a TCI like Pb0.6Sn0.4Te has poor thermoelectric properties. Breaking of crystal symmetry can widen the band gap of TCI. While breaking of mirror symmetry in a TCI has been mostly explored by various physical perturbation techniques, chemical doping, which may also alter the electronic structure of TCI by perturbing the local mirror symmetry, has not yet been explored. Herein, we demonstrate that Na doping in Pb0.6Sn0.4Te locally breaks the crystal symmetry and opens up a bulk electronic band gap, which is confirmed by direct electronic absorption spectroscopy and electronic structure calculations. Na doping in Pb0.6Sn0.4Te increases p‐type carrier concentration and suppresses the bipolar conduction (by widening the band gap), which collectively gives rise to a promising zT of 1 at 856 K for Pb0.58Sn0.40Na0.02Te. Breaking of crystal symmetry by chemical doping widens the bulk band gap in TCI, which uncovers a route to improve TCI for thermoelectric applications.  相似文献   

13.
In the aim to obtain a new powder able to substitute oxide intensively used as a material for the positive electrode in the batteries Lithium-ion, the LiNi0.43Mn0.43Co0.13O2 material was synthesized by sol–gel method and characterized by XRD, RAMAN and TEM. The composition of our LiNi0.43Mn0.43Co0.13O2 oxide was checked by ICP analysis. The Rietveld refinement showed a very weak mixing cation disorder, probably due to the presence of nickel excess in this material. Electrochemical performances of LiNi0.43Mn0.43Co0.13O2 oxide were tested using this material as positive electrode in a battery of lithium.  相似文献   

14.
A significant obstacle in the large-scale applications of sodium borohydride (NaBH4) for hydrogen storage is its high cost. Herein, we report a new method to synthesize NaBH4 by ball milling hydrated sodium tetraborate (Na2B4O7 ⋅ 10H2O) with low-cost Al or Al88Si12, instead of Na, Mg or Ca. An effective strategy is developed to facilitate mass transfer during the reaction by introducing NaH to enable the formation of NaAlO2 instead of dense Al2O3 on Al surface, and by using Si as a milling additive to prevent agglomeration and also break up passivation layers. Another advantage of this process is that hydrogen in Na2B4O7 ⋅ 10H2O serves as a hydrogen source for NaBH4 generation. Considering the low cost of the starting materials and simplicity in operation, our studies demonstrate the potential of producing NaBH4 in a more economical way than the commercial process.  相似文献   

15.
H2S is a gaseous signaling molecule that modifies cysteine residues in proteins to form persulfides (P‐SSH). One family of proteins modified by H2S are zinc finger (ZF) proteins, which contain multiple zinc‐coordinating cysteine residues. Herein, we report the reactivity of H2S with a ZF protein called tristetraprolin (TTP). Rapid persulfidation leading to complete thiol oxidation of TTP mediated by H2S was observed by low‐temperature ESI‐MS and fluorescence spectroscopy. Persulfidation of TTP required O2 , which reacts with H2S to form superoxide, as detected by ESI‐MS, a hydroethidine fluorescence assay, and EPR spin trapping. H2S was observed to inhibit TTP function (binding to TNFα mRNA) by an in vitro fluorescence anisotropy assay and to modulate TNFα in vivo. H2S was unreactive towards TTP when the protein was bound to RNA, thus suggesting a protective effect of RNA.  相似文献   

16.
Two materials, pure poly(acrylic acid) (PAA) and nanocomposites with a matrix of PAA and carbon nanotubes (CNTs) as reinforcing agent were synthesized by semi-continuous heterophase polymerization (SHP). CNTs were prepared by a chemical vapor deposition technique and purified by steam. CNTs were characterized by a high resolution scanning electron microscopy (HRSEM) and Raman and Fourier transform infrared spectroscopies. Nanocomposites were prepared with: (i) purified CNTs (CNTsp) or (ii) purified and functionalized CNTs possessing an acyl chloride moiety (CNTsOCl). In both cases, the nanocomposites synthesis was carried out by in situ polymerization of acrylic acid (AA) by SHP. When CNTsOCl were used previously to the polymerization of AA, a series of specific amounts of CNTsOCl and AA were mixed to induce a chemical reaction between the carboxyl group of AA and the acyl chloride group of the CNTsOCl. The product, acrylic acid grafted to CNTsOCl (CNTsOCl-AA), was used to prepare the PAA-CNTsOCl nanocomposites. The PAA-CNTsOCl nanocomposites were characterized by HRSEM, Raman, FTIR and CPMAS 13C-NMR spectroscopies and also by thermogravimetric analysis (TGA). The results reveal that PAA-CNTsOCl nanocomposites were formed by PAA macromolecules grafted to CNTsOCl. The kinetic behavior observed for the synthesis of pure PAA or PAA-CNTsOCl nanocomposites by SHP was similar. Latexes of PAA-CNTsOCl nanocomposites were stable without formation of a precipitate of CNTsOCl for over 1.5 years, while latex prepared with CNTsp and PAA, was unstable and formation of a precipitate of CNTsp was observed immediately after its preparation. PAA-CNTsp nanocomposites were characterized only by TGA. Moreover, latex of the PAA-CNTsp nanocomposite that did not precipitate immediately after its preparation, turned into a gel; this gelation never occurred with the PAA-CNTsOCl nanocomposite latex.  相似文献   

17.
CO2-transformations into high value-added products have become a fascinating area in green chemistry. Herein, a Ru(III)-porphyrin catalyst (RuCl3 ⋅ 3H2O−H2TPP) was found highly efficient in the three-component reaction of CO2, aliphatic amines and dichloroethane (or its derivative) for synthesis of oxazolidinones in the yields of 71∼91%. It was indicated by means of the control experiments and UV-vis spectra that CO2 was stoichiometrically activated by the involved aliphatic amine substrates to form a stable carbamate salt while 1,2-dichloroethane (or its derivative) was independently activated by the involved Ru(III)-porphyrin catalyst. The combination of CO2-activation by aliphatic amines with 1,2-dichloroethane activation by Ru(III)-porphyrin catalyst cooperatively contributed to this successful transformation.  相似文献   

18.
A new structural state 25L-Ta2O5, obtained from sintering and annealing treatments of a Ta2O5 powder, is identified both by electron diffraction and high resolution imaging on a transmission electron microscope (TEM). According to general rules for the different L-Ta2O5 structures proposed by Grey et al. (J. Solid State Chem. 178 (2005) 3308), a structural model is derived from their crystallographic data on 19L-Ta2O5. This model yields simulated images in agreement with high resolution TEM observations of the structure oriented along its [001] zone axis, but only for a very thin crystal thickness of less than 1.2 nm. Such a limitation is shown to be due to a modulation of the structure along its [001] axis. Actually, from an analysis of a diffuse scattering and of its evolution into satellites reflections as a function of the cooling rate, a second order incommensurate phase transition can be assumed to occur in this compound. The property of single phase samples observed by TEM is also verified by X-ray powder diffraction. In a discussion about studies performed by different authors on incommensurate structures in the system Ta2O5-WO3, it is noticed that TEM results, similar to ours, indicate that phase transitions could be expected in these structures.  相似文献   

19.
The reduction of the tetrachloroaurate (III) anion by L (L = PPh3, AsPh3, SbPh3) is quantitative in non-aqueous solution. The products are the gold(I)-complexes AuClL (L = AsPh3, SbPh3) and Au(PPh3)+2 together with the corresponding oxidation product LCl2. Kinetic studies show that the reactions are first order in AuCl?1 and L. In addition a path independent of PPh3 was found in dichloromethane. These data are interpreted in terms of mechanisms which involve reduction of AuCl?4 to AuCl?2 followed by equilibrium formation of AuClL for L = AsPh3 and SbPh3. For PPh3, the data are consistent with a chloride replacement by PPh3 to give AuCl3 PPh3, which is followed by a rapid reduction by a second mole of PPh3. Equilibrium formation constants are reported for several Au(I) complexes.  相似文献   

20.
All previously reported C70 isomers have positive curvature and contain 12 pentagons in addition to hexagons. Herein, we report a new C70 species with two negatively curved heptagon moieties and 14 pentagons. This unconventional heptafullerene[70] containing two symmetric heptagons, referred to as dihept‐C70, grows in the carbon arc by a theoretically supported pathway in which the carbon cluster of a previously reported C66 species undergoes successive C2 insertion via a known heptafullerene[68] intermediate with low energy barriers. As identified by X‐ray crystallography, the occurrence of heptagons facilitates a reduction in the angle of the π‐orbital axis vector in the fused pentagons to stabilize dihept‐C70. Chlorination at the intersection of a heptagon and two adjacent pentagons can greatly enlarge the HOMO–LUMO gap, which makes dihept‐C70Cl6 isolable by chromatography. The synthesis of dihept‐C70Cl6 offers precious clues with respect to the fullerene formation mechanism in the carbon‐clustering process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号