首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We study a class of partial differential equations (PDEs) in the family of the so‐called Euler–Poincaré differential systems, with the aim of developing a foundation for numerical algorithms of their solutions. This requires particular attention to the mathematical properties of this system when the associated class of elliptic operators possesses nonsmooth kernels. By casting the system in its Lagrangian (or characteristics) form, we first formulate a particle system algorithm in free space with homogeneous Dirichlet boundary conditions for the evolving fields. We next examine the deformation of the system when nonhomogeneous “constant stream” boundary conditions are assumed. We show how this simple change at the boundary deeply affects the nature of the evolution, from hyperbolic‐like to dispersive with a nontrivial dispersion relation, and examine the potentially regularizing properties of singular kernels offered by this deformation. From the particle algorithm viewpoint, kernel singularities affect the existence and uniqueness of solutions to the corresponding ordinary differential equations systems. We illustrate this with the case when the operator kernel assumes a conical shape over the spatial variables, and examine in detail two‐particle dynamics under the resulting lack of Lipschitz continuity. Curiously, we find that for the conically shaped kernels the motion of the related two‐dimensional waves can become completely integrable under appropriate initial data. This reduction projects the two‐dimensional system to the one‐dimensional completely integrable Shallow‐Water equation [1], while retaining the full dependence on two spatial dimensions for the single channel solutions. Finally, by comparing with an operator‐splitting pseudospectral method we illustrate the performance of the particle algorithms with respect to their Eulerian counterpart for this class of nonsmooth kernels.  相似文献   

2.
In the present paper, dynamical systems with Prandtl hysteresis operator are considered. For the class of dynamical systems under consideration, a frequency-domain global stability criterion is formulated and proved. For a second-order dynamical system with Prandtl operator, we demonstrate the advantage of the obtained criterion as compared to the well-known criterion derived by Logemann and Ryan.  相似文献   

3.
This paper is the first systematic study of homogeneous polynomials on Banach lattices. A variety of new Banach spaces and Banach lattices of multilinear maps, homogeneous polynomials, and operators are introduced. The main technique is to employ positive tensor products and quotients of positive tensor products. Our theorems generalize the results on orthogonally additive polynomials by Benyamini, Lassalle, and Llavona (2006) in [4], the results by Grecu and Ryan (2005) in [14], and the results by Sundaresan (1991) in [23].  相似文献   

4.
Using the renormalization method introduced by the authors, we prove what we call the local Boltzmann‐Gibbs principle for conservative, stationary interacting particle systems in dimension d = 1. As applications of this result, we obtain various scaling limits of additive functionals of particle systems, like the occupation time of a given site or extensive additive fields of the dynamics. As a by‐product of these results, we also construct a novel process, related to the stationary solution of the stochastic Burgers equation. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
J. Rudolph  J. Winkler 《PAMM》2003,2(1):104-105
Flatness‐based control of nonlinear systems has been generalized in [1] to systems with time‐delays of constant amplitude. Continuous stirred tank chemical reactors with recycle provide examples of such systems. However, if the volume flow‐rate in the recycle is used as control input the time delay depends on control. This can be avoided by a proper choice of the independent variable, i.e., time transformation: Transported volume is used instead of time. This leads to systems with a time delay of constant amplitude belonging to a class of systems which can be called a generalized type of π‐flat systems [2], barely studied so far. Motion planning and tracking control can be achieved by flatness‐based methods.  相似文献   

6.
Stephan Trenn 《PAMM》2017,17(1):821-822
Recently, it was suggested in [Shim & Trenn 2015] to use the idea of funnel control in the context of synchronization of multi-agent systems. In that approach each agent is able to measure the difference of its own state and the average state of its neighbours and this synchronization error is used in a typical funnel gain feedback law, see e.g. [Ilchmann & Ryan 2008]. Instead of considering one error signal for each node of the coupling graph (corresponding to an agent) it is also possible to consider one error signal for each edge of the graph. In contrast to the node-wise approach this edgewise funnel synchronization approach results (at least in simulations) in a predictable consensus trajectory. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Equivalent deductive systems were introduced in [4] with the goal of treating 1‐deductive systems and algebraic 2‐deductive systems in a uniform way. Results of [3], appropriately translated and strengthened, show that two deductive systems over the same language type are equivalent if and only if their lattices of theories are isomorphic via an isomorphism that commutes with substitutions. Deductive equivalence of π‐institutions [14, 15] generalizes the notion of equivalence of deductive systems. In [15, Theorem 10.26] this criterion for the equivalence of deductive systems was generalized to a criterion for the deductive equivalence of term π‐institutions, forming a subclass of all π‐institutions that contains those π‐institutions directly corresponding to deductive systems. This criterion is generalized here to cover the case of arbitrary π‐institutions.  相似文献   

8.
Models presented in several recent papers [1–3] dealing with particle transport by, and deposition from, bottom gravity currents produced by the sudden release of dilute, well‐mixed fixed‐volume suspensions have been relatively successful in duplicating the experimentally observed long‐time, distal, areal density of the deposit on a rigid horizontal bottom. These models, however, fail in their ability to capture the experimentally observed proximal pattern of the areal density with its pronounced dip in the region initially occupied by the well‐mixed suspension and its equally pronounced local maximum at roughly the one‐third point of the total reach of the deposit. The central feature of the models employed in [1–3] is that the particles are always assumed to be vertically well‐mixed by fluid turbulence and to settle out through the bottom viscous sublayer with the Stokes settling velocity for a fluid at rest with no re‐entrainment of particles from the floor of the tank. Because this process is assumed from the outset in the models of [1–3], the numerical simulations for a fixed‐volume release will not take into account the actual experimental conditions that prevail at the time of release of a well‐mixed fixed‐volume suspension. That is, owing to the vigorous stirring that produces the well‐mixed suspension, the release volume will initially possess greater turbulent energy than does an unstirred release volume, which may only acquire turbulent energy as a result of its motion after release through various instability mechanisms. The eddy motion in the imposed fluid turbulence reduces the particle settling rates from the values that would be observed in an unstirred release volume possessing zero initial turbulent energy. We here develop a model for particle bearing gravity flows initiated by the sudden release of a fixed‐volume suspension that takes into account the initial turbulent energy of mixing in the release volume by means of a modified settling velocity that, over a time scale characteristic of turbulent energy decay, approaches the full Stokes settling velocity. Thereafter, in the flow regime, we assume that the turbulence persists and, in accord with current understanding concerning the mechanics of dense underflows, that this turbulence is most intense in the wall region at the bottom of the flow and relatively coarse and on the verge of collapse (see [22]) at the top of the flow where the density contrast is compositionally maintained. We capture this behavior by specifying a “shape function” that is based upon experimental observations and provides for vertical structure in the volume fraction of particles present in the flow. The assumption of vertically well‐mixed particle suspensions employed in [1–5] corresponds to a constant shape function equal to unity. Combining these two refinements concerning the settling velocity and vertical structure of the volume fraction of particles into the conservation law for particles and coupling this with the fluid equations for a two‐layer system, we find that our results for areal density of deposits from sudden releases of fixed‐volume suspensions are in excellent qualitative agreement with the experimentally determined areal densities of deposit as reported in [1, 3, 6]. In particular, our model does what none of the other models do in that it captures and explains the proximal depression in the areal density of deposit.  相似文献   

9.
We use a particle method to study a Vlasov‐type equation with local alignment, which was proposed by Sebastien Motsch and Eitan Tadmor [J. Statist. Phys., 141(2011), pp. 923‐947]. For N‐particle system, we study the unconditional flocking behavior for a weighted Motsch‐Tadmor model and a model with a “tail”. When N goes to infinity, global existence and stability (hence uniqueness) of measure valued solutions to the kinetic equation of this model are obtained. We also prove that measure valued solutions converge to a flock. The main tool we use in this paper is Monge‐Kantorovich‐Rubinstein distance.  相似文献   

10.
O. Schilling  S. Reese 《PAMM》2004,4(1):370-371
An appropriate method for the simulation of continuous forming processes is the material point method (MPM) [1],[2] which combines the viewpoints of fluid dynamics and solid mechanics. The MPM and related methods [3] are derived from the particle‐in‐cell methods [4]. Bodies are discretised by Lagragian particles with pointwise mass distributions. The differential equations in their weak form are solved on temporary meshes built of standard finite elements. At the end of each time step the particle positions are updated and the mesh is replaced by a new mesh with a regular shape. The state variables at the nodes of the new mesh are extracted from the state variables at the particles by a transfer algorithm. When particles pass element boundaries, numerical difficulties might be observed. These are eliminated by a smooth approximation of nodal data from material point data. The modified MPM has been implemented together with the FEM in one programme because the similarities of the methods outbalance the differences. On the basis of numerical examples the results of both methods are compared. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
This paper studies systems of explicit mathematics as introduced by Feferman [9, 11]. In particular, we propose weak explicit type systems with a restricted form of elementary comprehension whose provably terminating operations coincide with the functions on binary words that are computable in polynomial time. The systems considered are natural extensions of the first‐order applicative theories introduced in Strahm [19, 20] (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The quasisteady axisymmetrical flow of an incompressible viscous fluid past an assemblage of slip eccentric spherical particle‐in‐cell models with Happel and Kuwabara boundary conditions is investigated. A linear slip, Basset type, boundary condition on the surface of the spherical particle is used. Under the Stokesian approximation, a general solution is constructed from the superposition of the basic solutions in the two spherical coordinate systems based on the particle and fictitious spherical envelope. The boundary conditions on the particle's surface and fictitious spherical envelope are satisfied by a collocation technique. Numerical results for the normalized drag force acting on the particle are obtained with good convergence for various values of the volume fraction, the relative distance between the centers of the particle and fictitious envelope and the slip coefficient of the particle. In the limits of the motions of the spherical particle in the concentric position with cell surface and near the cell surface with a small curvature, the numerical values of the normalized drag force are in good agreement with the available values in the literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Squashed 6‐cycle systems are introduced as a natural counterpart to 2‐perfect 6‐cycle systems. The spectrum for the latter has been determined previously in [5]. We determine completely the spectrum for squashed 6‐cycle systems, and also for squashed 6‐cycle packings.  相似文献   

14.
15.
A. Kubik  L. Kleiser 《PAMM》2004,4(1):512-514
Trajectories of solid particles in laminar and turbulent flow over a backward‐facing step (BFS) were numerically computed by integrating the equation of motion for particles. The various forces acting on the particles [5],[6] were calculated for a variety of flow Reynolds numbers and for different particle characteristics such as the Stokes number and the particle‐to‐fluid density ratio. The investigation was conducted for the distinct flow regimes of the BFS flow separately. Generally, the drag and gravitation were found to be the most significant forces. The lift and history force were the next most important, mostly two orders of magnitude smaller, but in some cases closing up to the other two in importance. The pressure and virtual mass effects were very small for the majority of cases. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Compact Bilinear Logic (CBL), introduced by Lambek [14], arises from the multiplicative fragment of Noncommutative Linear Logic of Abrusci [1] (also called Bilinear Logic in [13]) by identifying times with par and 0 with 1. In this paper, we present two sequent systems for CBL and prove the cut‐elimination theorem for them. We also discuss a connection between cut‐elimination for CBL and the Switching Lemma from [14].  相似文献   

17.
High‐speed space‐ or aircrafts travelling through a dusty atmosphere may meet dust clouds in which the particles are often distributed very nonuniformly. Such nonuniformities may result in the onset of unsteady effects in the shock and boundary layer and (that is of prime interest) unsteady heat fluxes at the stagnation region of the vehicle. In the nearwall region of high‐speed dusty‐gas flow, there may take place regimes with and without particle inertial deposition, which require essentially different mathematical models for describing the heat transfer [1]. The present paper deals with two problems, considered within the framework of the two‐fluid model of dusty gas [2]: (i) determination of the limits of the particle inertial deposition regime and the distribution of dispersed‐phase parameters near the frontal surface of a sphere immersed in dusty supersonic flow (Mach number M = 6) at moderate flow Reynolds numbers (102 ≤ Re ≤ ∞); (ii) effect of free‐stream nonuniformities in the concentration of low inertial (non‐depositing) particles on the friction and heat transfer at the stagnation point of the body at high Re and M.  相似文献   

18.
A. Kubik  L. Kleiser 《PAMM》2003,2(1):380-381
Flow separation and recirculation caused by a sudden expansion in the channel geometry in the form of a backwardfacing step (BFS) appear in numerous practical applications. Additionally, BFS flow has been used as a generic test case to study fundamental flow properties, such as separation or re‐attachment. In the present work, BFS flow laden with dispersed particles is investigated by numerical simulations using a spectral element method [1]. The motion of the dispersed particles is computed by Lagrangian particle tracking. In a first step, only the influence of the flow on the particles is accounted for, while possible effects of the particle motion on the flow are neglected. Spatial distribution of the particles is investigated, and effects of different wall‐particle interaction models on the computational results are examined.  相似文献   

19.
We prove the large‐deviation principle for the empirical process in a system of locally interacting Brownian motions in the nonequilibrium. Such a phenomenon has been proven only for two lattice systems: the symmetric simple exclusion process and the zero‐range process. Therefore, we have achieved the third result in this context and moreover the first result for the diffusion‐type interacting particle system.© 2016 Wiley Periodicals, Inc.  相似文献   

20.
The Timoshenko system is a distinguished coupled pair of differential equations arising in mathematical elasticity. In the case of constant coefficients, if a damping is added in only one of its equations, it is well‐known that exponential stability holds if and only if the wave speeds of both equations are equal. In the present paper we study both non‐homogeneous and homogeneous thermoelastic problems where the model's coefficients are non‐constant and constants, respectively. Our main stability results are proved by means of a unified approach that combines local estimates of the resolvent equation in the semigroup framework with a recent control‐observability analysis for static systems. Therefore, our results complement all those on the linear case provided in [22], by extending the methodology employed in [4] to the case of Timoshenko systems with thermal coupling on the bending moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号