首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 920 毫秒
1.
Novel nickel‐copper modified pencil graphite electrode (Ni?Cu/PGE) was fabricated and used as non‐enzymatic sensor for glucose determination. Ni and copper were electrodeposited on PGE using cyclic voltammetry. Morphology and composition of the modified PGE electrode were characterized by field‐emission gun scanning electron microscopy (FEG‐SEM), energy‐dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT‐IR). Electrochemical oxidation of glucose was evaluated by cyclic voltammetry as well as by amperometry. Electrochemical measurements indicate that the Ni?Cu/PGE exhibits a high sensitivity of 2951 μA mM?1 cm?2, and a low detection limit of 0.99 μM which are, respectively, three times higher and twice lower than that on Ni/PGE prepared in the same conditions. Moreover, Ni?Cu/PGE exhibits a wider linear range from 1 to 10000 μM with a rapid response time within 2 s. Moreover, Ni?Cu/PGE showed a remarkable stability. The electrode was successfully applied for determination of glucose concentration in human blood without significant interference from potential endogenic interferents. The good applicability of the elaborated sensor made Ni?Cu/PGE promising for the development of effective and inexpensive non‐enzymatic glucose sensor.  相似文献   

2.
In this study, a potentiometric sensor based on a pencil graphite electrode (PGE) coated with polypyrrole doped with uranyl zinc acetate (termed PGE/PPy/U) have been prepared for potentiometric determination of uranyl in aqueous solutions. Electropolymerization reaction for preparing of U(VI) sensor electrode was carried via applying a constant current of 1.0 mA on PGA working electrode in a solution containing 8.0 mM pyrrole and 0.8 mM ZnUO2(CH3COO)4 salt. The constructed electrode displayed a linear and near Nernstian response (22.60 ± 0.40 mV/decade) to U(VI) ions in the concentration range of 1.0 × 10?6–1.0 × 10?2 M. A detection limit of 6.30 × 10?7 M and a fast response time (≤12 s) was observed during measurements. The working pH range of the electrode was 4.0–8.0 and lifetime of the sensor was at least 60 days. The electrode revealed good selectivity with respect to many cations including alkali, alkaline earth, transition and heavy metal ions. The introduced uranyl electrode was used for measurement of U(VI) ion in real samples without any serious inferences from other ions.  相似文献   

3.
《Electroanalysis》2006,18(12):1208-1214
A reagentless amperometric biosensor sensitive to lactate was developed. This sensor comprises a carbon paste electrode modified with lactate dehydrogenase (LDH), nicotinamide adenine dinucleotide (NAD+) cofactor and Meldola's blue (MB) adsorbed on silica gel coated with niobium oxide. The amperometric response was based on the electrocatalytic properties of MB to oxidize NADH, which was generated in the enzymatic reaction of lactate with NAD+ under catalysis of LDH. The dependence on the biosensor response was investigated in terms of pH, supporting electrolyte, ionic strength, LDH and NAD+ amounts and applied potential. The biosensor showed an excellent operational stability (95% of the activity was maintained after 250 determinations) and storage stability (allowing measurements for over than 2.5 months, when stored in a refrigerator). The proposed biosensor also presented good sensitivity allowing lactate quantification at levels down to 6.5×10?6 mol L?1. Moreover, the biosensor showed a wide linear response range (from 0.1 to 14 mmol L?1 for lactate). These favorable characteristics allowed its application for direct measurements of lactate in biological samples such as blood. The precision of the data obtained by the proposed biosensor show reliable results for real complex matrices.  相似文献   

4.
《Analytica chimica acta》2002,457(2):275-284
Graphite electrodes modified with a drop-coated layer of polyethyleneimine (PEI) and adenosine diphosphate (ADP) displayed an electrocatalytic response to NADH after the adenine moiety of ADP was electrochemically oxidised. NADH can be detected amperometrically in alkaline solution (pH 9.0) at low applied potentials (+50 mV (Ag/AgCl)). Using a stationary electrode arrangement, linear response for NADH concentrations between 1.0×10−8 and 1.0×10−4 M was found, with a response time of 12 s and a detection limit of 8×10−9 M. The electrode was applied to the amperometric monitoring of the reaction between lactate and NAD+ catalysed by lactate dehydrogenase (LDH). A flow injection-amperometric method for the determination of LDH activity in human serum was developed. The method allows a fast and accurate discrimination between pathological and normal LDH activity levels, with a sampling rate of 40 h−1. Quantitative results for a random set of human serum samples were found to be in good agreement with the standard spectrophotometric method.  相似文献   

5.
A sensitive and selective electrochemical sensor based on molecularly imprinted polymers (MIPs) was developed for caffeine (CAF) recognition and detection. The sensor was constructed through the following steps: multiwalled carbon nanotubes and gold nanoparticles were first modified onto the glassy carbon electrode surface by potentiostatic deposition method successively. Subsequently, o-aminothiophenol (ATP) was assembled on the surface of the above electrode through Au–S bond before electropolymerization. During the assembled and electropolymerization processes, CAF was embedded into the poly(o-aminothiophenol) film through hydrogen bonding interaction between CAF and ATP, forming an MIP electrochemical sensor. The morphologies and properties of the sensor were characterized by scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry. The recognition and determination of the sensor were observed by measuring the changes of amperometric response of the oxidation-reduction probe, [Fe(CN)6]3?/[Fe(CN)6]4?, on modified electrode. The results demonstrated that the prepared sensor had excellent selectivity and high sensitivity for CAF, and the linear range was 5.0?×?10?10?~?1.6?×?10?7?mol?L?1 with a detection limit of 9.0?×?10?11?mol?L?1 (S/N?=?3). The sensor was also successfully employed to detect CAF in tea samples.  相似文献   

6.
A pencil graphite electrode (PGE) electrodeposited by a polypyrrole conducting polymer doped with tartrazine (termed as PGE/PPy/Tar) was prepared and used as a zinc (II) solid-state ion-selective electrode. For the preparation of the zinc sensor electrode, electrodeposition of a polypyrrole nanofilm was carried out potentiostatically (E app?=?0.75 V vs SCE) in a solution containing 0.010 M pyrrole and 0.001 M tartrazine trisodium salt. A pencil graphite and Pt wire were used as working and auxiliary electrodes, respectively. The introduced electrode in the current paper can be fabricated simply and was found to possess high selectivity, exhibited wide working concentration range, sufficiently rapid response, potential stability, and very good sensitivity to Zn (II) ion. The sensor electrode showed a linear Nernstian response over the range of 1.0?×?10?5 to 1.0?×?10?1 M with a slope of 28.23 mV per decade change in zinc ion concentration. A detection limit of 8.0?×?10?6 M was obtained. The optimum pH working of the electrode was found to be 5.0.  相似文献   

7.
A very effective electrochemical sensor for the analysis of propranolol was constructed using TiO2/MWCNT film deposited on the pencil graphite electrode as modifier. The modified electrode represented excellent electrochemical properties such as fast response, high sensitivity and low detection limit. The proposed sensor showed an excellent selective response to propranolol in the presence of foreign species and other drugs. The electrochemical features of the modified electrode were investigated by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) technique which indicated a decrease in resistance of the modified electrode versus bare PGE and MWCNT/PGE. The surface morphology for the modified electrode was determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). Differential pulse technique (DPV) was used to determine propranolol which showed a good analytical response in the linear range of 8.5×10−8-6.5×10−6 M with a limit of detection 2.1×10−8 M. The TiO2/MWCNT/PGE sensor was conveniently applied for the measurement of propranolol in biological and pharmaceutical media.  相似文献   

8.
The electrochemical response of a modified-carbon nanotubes paste electrode with p-aminophenol was investigated as an electrochemical sensor for sulfite determination. The electrochemical behaviour of sulfite was studied at the surface of the modified electrode in aqueous media using cyclic voltammetry and square wave voltammetry. It has been found that under the optimum condition (pH 7.0) in cyclic voltammetry, the oxidation of sulfite occurs at a potential about 680?mV less positive than that of an unmodified-carbon nanotubes paste electrode. Under the optimized conditions, the electrocatalytic peak current showed linear relationship with sulfite concentration in the range of 2.0?×?10?7–2.8?×?10?4?mol?L?1 with a detection limit of 9.0?×?10?8?mol?L?1 sulfite. The relative standard deviations for ten successive assays of 1.0 and 50.0?µmol?L?1 sulfite were 2.5% and 2.1%, respectively. Finally, the modified electrode was examined as a selective, simple and precise new electrochemical sensor for the determination of sulfite in water and wastewater samples.  相似文献   

9.
A novel ion selective carbon paste electrode for Cd2+ ions based on 2,2′-thio-bis[4-methyl(2-amino phenoxy) phenyl ether] (TBMAPPE) as an ionophore was prepared. The carbon paste was made based on a new nano-composite including multi-walled carbon nanotubes (MWCNTs), nanosilica and room-temperature ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). The constructed nano-composite electrode showed better sensitivity, selectivity, response time, response stability and lifetime in comparison with typical Cd2+ carbon paste sensor for the successful determination of Cd2+ ions in water and in waste water samples. The best performance for nano-composite sensor was obtained with an electrode composition of 18% TBMAPPE, 20% BMIM-PF6, 48% graphite powder, 10% MWCNT and 4% nanosilica. The new electrode exhibited a Nernstian response (29.95?±?0.10?mV?decade?1) toward Cd2+ ions in the range of 3.0?×?10?8 to 1.0?×?10?1?mol?L?1 with a detection limit of 7.5?×?10?9?mol?L?1. The potentiometric response of prepared sensor was independent of the pH of test solution in the pH range 3.0 to 5.5. It had a quick response with a response time of about 6?s. The proposed electrode showed fairly good selectivity over some alkali, alkaline earth, transition and heavy metal ions.  相似文献   

10.
The features of a new sensor for determining l-lactate are reported. The enzyme lactate oxidase and the mediator, tetrathiafulvalene (TTF), are absorbed on carbon foil disks previously bonded onto the ends of glass tubes. Linear calibration graphs were obtained in the range 10?4?10?3 M with physiological phosphate buffer (pH 7.35) and at 30°C with a response time of a few seconds. Calibration graphs in the range 10?3?10?2 M were also obtained and the difference in response times between these two ranges were investigated. The results are promising for assembling disposable lactate sensors for in vitro or for in or ex vivo measurements.  相似文献   

11.
An amperometric lactate biosensor based on human erythrocytes is described. The erythrocyte suspension is retained near the platinum electrode by means of a semipermeable membrane. The response is based on lactate dehydrogenase activity in the erythrocytes and uses the oxidation of NADH by hexacyanoferrate(III) and amperometric detection of the resulting hexacyanoferrate(II). The limit of detection is 2.8 × 10?5 mol l?1, and the response is linear up to 1 mmol l?1 lactate in the analyzed solution (11 mmol l?1 in a blood sample). The response time is 7 min, and the useful lifetime is 2 weeks. The response is influenced only by reducing substances (uric acid) and malic acid. The effect of uric acid is readily compensated, and there is insufficient malic acid in blood to affect the results.  相似文献   

12.
Ju HX  Dong L  Chen HY 《Talanta》1996,43(7):1177-1183
A method has been developed for the modification of a carbon fiber microcylinder electrode with acylation. The stability and surface coverage of the Toluidine Blue O-modified microelectrode were studied by cyclic voltammetry. The modified electrode showed significant activity for the electrocatalytic oxidation of NADH in pH 6.8-7.8 solution. The catalytic current increased linearly with increasing concentration of NADH from 4.0 x 10(-5) to 1.5 x 10(-3) M. A simple amperometric determination based on electrochemical detection of NADH produced from the enzymatic reaction of lactate with NAD(+) under the catalysic effect of lactate dehydrogenase (LDH) is reported. The experimental factors which had primary influence on the analytical performance were studied. The sensor had a linear response over a range of LDH concentrations from 5.0 U l(-1) to 200 U l(-1) at -0.2 V vs. SCE under optimum conditions. A satisfactory result was obtained for the determination of LDH in clinical blood samples.  相似文献   

13.
A simple but highly snesitive electrochemical sensor for the determination of dihydromyricetin (DMY) based on graphene‐Nafion nanocomposite film modified Glassy carbon electrode (GCE) was reported. The characteristic of the sensor was examined by scanning electron microscopic (SEM) and electrochemical impedance spectroscopy (EIS). Compares with bare GCE, pre‐anodized glassy carbon electrode (GCE(ox)) and Nafion modified electrode, the sensor exhibited the more superior ability of detecting DMY, due to the synergetic graphene and Nafion. Other, the dependence of the current on pH, instrumental parameters, accumulation time and potential were investigated to optimize the experimental conditions in the determination of DMY. Under the selected conditions, the response peak currents were linear relationship with the DMY concentrations in the range of 8.0 × 10?8 ~ 2.0 × 10?5 mol L?1 with a detection limit of 2.0 × 10?8 mol L?1. And, the method was also applied successfully to detect DMY in Ampelopsis grossedentata samples.  相似文献   

14.
An electrochemical sensor has been constructed for the determination of adriamycin (ADM) that is based on a glassy carbon electrode modified with silver nanoparticles and multi-walled carbon nanotubes with carboxy groups. The modified electrode was characterized by scanning electron microscopy and exhibits a large enhancement of the differential pulse voltammetric response to ADM. Signals are linear with the concentrations of ADM in the range from 8.2?×?10?9 M to 19.0?×?10?9 M, with a detection limit of 1.7?×?10?9 M. The sensor is highly reproducible and exhibits excellent stability. It was to detect calf thymus DNA.  相似文献   

15.
Lead-doped carbon ceramic electrode as a new type of renewable composite electrode was prepared by mixing the lead powder with electrode matrix before gelation. Pb on the electrode surface was then converted to lead dioxide by the potential scanning of the composite electrode in 0.1 M NaOH solution in the range of ? 0.3 to 0.7 V versus SCE. The composition and morphology of the electrodes were studied by energy dispersive X-ray spectrometry, scanning electron microscopy, and atomic force microscopy techniques. Cyclic voltammetry and chronoamperometry techniques were also used to study the electrocatalytic activity of the modified electrode toward the oxidation of the l-tyrosine. The best results were obtained at a working potential of 0.45 V (vs. SCE) in 0.1 M NaOH solution. The sensor exhibited a good linear response in the range of 5–1458 µM with a coefficient of determination of 0.9963. The detection limit was 0.77 µM, and sensitivity was 37.4 μA mM?1. In addition, the modified electrode showed high stability and interference-free response for to detection of the l-tyrosine.  相似文献   

16.
The present work describes the development of a highly sensitive amperometric sensor for 4‐NP in nanomolar levels using a glassy carbon electrode modified with alternating layers of CuTSPc and FeT4MPyP. After optimizing the operational conditions, the sensor provided a linear response range for 4‐NP from 5 up to 100 nmol L?1 with sensitivity, detection, and quantification limits of 14 nA L nmol?1, 1.9 nmol L?1, and 5.4 nmol L?1, respectively. The proposed sensor showed a stable response for at least 200 successive determinations. This modified electrode can be used to the determination of 4‐NP in water samples.  相似文献   

17.
A non-enzymatic amperometric sensor is developed based on the graphite electrode modified with functionalized graphene for the determination of β, d (+)-glucose. Cyclic voltammetry and electrochemical impedance spectroscopy techniques are used to study the behavior. Atomic force microscopy was used to study the surface topography of the working electrode before and after its modification. The sensor enabled the direct electrochemical oxidation of β, d (+)-glucose in alkaline medium and responded linearly to the analyte over the range from 0.5?×?10?3 to 7.5?×?10?3?M with a limit of detection of 10?μM. The sensor is found to exhibit a better sensitivity of 28.4?μA?mM?1?cm?2, good stability, and shelf life. The sensitivity of the sensor to β, d (+)-glucose was not affected by the commonly co-existing interfering substances such as l-ascorbic acid, dopamine, uric acid, and acetaminophen.  相似文献   

18.
A modified glassy carbon electrode was prepared as an electrochemical voltammetric sensor based on molecularly imprinted polymer film for tartrazine (TT) detection. The sensitive film was prepared by copolymerization of tartrazine and acrylamide on the carbon nanotube-modified glassy carbon electrode. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. Under the optimum conditions, two dynamic linear ranges of 8?×?10?8 to 1?×?10?6?mol?L?1 and 1?×?10?6 to 1?×?10?5?mol?L?1 were obtained, with a detection limit of 2.74?×?10?8?mol?L?1(S/N?=?3). This sensor was used successfully for tartrazine determination in beverages.  相似文献   

19.
A novel method for enzyme immobilization in a polymer matrix was examined with lactate oxidase (LOD) to make a sensor for lactate. Poly(vinyl alcohol) (PVAL) and LOD were applied in layers on platinized graphite electrodes and cross-linked by exposure to a 60Co gamma radiation source. When the sensor is dipped in lactate solution, the product of the enzymatic reaction, hydrogen peroxide, is detected at +300 mV vs. Ag/AgCl. The LOD-PVAL lactate sensor exhibits a fast response (10–50 s), a linear range between 26 μM and 1.7 mM, a detection limit of 13 μM and a sensitivity of 2.94 μA mmol?1. The sensitivity and the linearity of the electrode were improved considerably by bubbling oxygen continuously through the lactate solution. Optimum response to lactate was obtained with a radiation dose of 3–10 Mrad. LOD was found to be active in the presence of the polymer under radiation doses as high as 40 Mrad. Repeated use of the sensors under various conditions showed a stable and reproducible response to lactate for over 80 days.  相似文献   

20.
《Analytical letters》2012,45(14):2309-2321
Abstract

A metalloporphyrin incorporated carbon paste sensor has been developed for the determination of metronidazole benzoate (MTZB). Zn(II) complex of 5,10,15,20-tetrakis (3-methoxy-4-hydroxy phenyl) porphyrin (TMHPP) was used as the active material. The MTZB gave a well-defined reduction peak at?0.713 V in 0.1 mol l?1 phosphate buffer solution of pH around 7. Compared with bare carbon paste electrode (CPE), the TMHPP Zn(II) modified electrode significantly enhanced the reduction peak current of MTZB as well as lowered its reduction potential. Under optimum conditions the reduction peak current was proportional to MTZB concentration over the range 1 × 10?3 mol l?1 to 1 × 10?5 mol l?1. The detection limit was found to be 4.36 × 10?6 mol l?1. This sensor has been successfully applied for the determination of MTZB in pharmaceutical formulations and urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号