首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid synthetic route has been developed to synthesize mono- and trifunctionalized 21-thia and 21-oxaporphyrin systems using simple precursors such as 2[alpha-(aryl)-alpha-hydroxymethyl] thiophene (thiophene mono-ol) and 2[alpha-(aryl)-alpha-hydroxymethyl] furan (furan mono-ol), respectively. Condensation of one equivalent of thiophene or furan mono-ol with two equivalents of aryl aldehyde and three equivalents of pyrrole under porphyrin forming conditions followed by column chromatography resulted in functionalized 21-thia or 21-oxaporphyrins. To synthesize monofunctionalized porphyrins, the mono-ol containing the functionalized aryl group was used. The functionalized aldehydes were used to synthesize trifunctionalized porphyrins. The mono-ol method is versatile and applicable to synthesize mono- and trifunctionalized 21-thia and 21-oxaporphyrins containing functional groups such as iodophenyl, ethynylphenyl, hydroxyphenyl, bromophenyl, and pyridyl groups. The monofunctionalized porphyrin building blocks containing iodophenyl and ethynylphenyl groups were used further to synthesize four unsymmetrical covalent porphyrin dimers containing two different porphyrin cores such as N3S-N4, N3O-N4, and N3S-N3O bridged via diaryl ethyne group and one symmetrical phenylethyne bridged dimer containing two N3S cores. A preliminary photophysical study on these dimers indicated a possibility of energy transfer from one subunit to another. We also demonstrated the use of trifunctionalized porphyrins in the synthesis of two noncovalent unsymmetrical porphyrin tetramers containing one N3S and three N4 porphyrin subunits.  相似文献   

2.
Core-modified porphyrins, resulting from the replacement of one or two pyrrolic nitrogens with other hetero atoms such as O, S, Se, and Te possess very interesting and distinct properties compared to tetrapyrrolic porphyrins. Specially, the singlet state energy levels can be fine tuned with suitable modification of porphyrin core by substituting pyrrolic “N” with hetero atoms such as “O” and “S”. In this review, we discuss the synthesis of various core-modified porphyrin building blocks containing one, two, three and four functional groups by following various synthetic methodologies developed in the past decade and the use of these core-modified porphyrin building blocks in the construction of several covalently and non-covalently linked hetero porphyrin dyads, triads, tetrads and pentads containing one or more different types of porphyrin sub-units. The photophysical studies are also described to show the possibility of singlet–singlet energy transfer from one porphyrin sub-unit to another in these hetero porphyrin arrays.  相似文献   

3.
Synthesis of a series of 21-thia and 21-oxoporphyrin building blocks containing two pyridyl functional groups at the meso positions in a cis fashion is reported. The building blocks were used to synthesize a series of cationic water-soluble 21-thia and 21-oxoporphyrins. An unsymmetrical non-covalent trimer containing two dissimilar porphyrin cores such as one N3S and two N4 porphyrins cores was also constructed using the pyridyl porphyrin building blocks reported here.  相似文献   

4.
Smita Rai 《Tetrahedron》2007,63(11):2455-2465
Three porphyrin building blocks with N4, N3S and N2S2 cores having three meso-furyl groups and one meso-iodophenyl group were synthesized and characterized. The porphyrin building blocks were used to synthesize six porphyrin dyads such as N4-N4, N3S-N3S, N2S2-N2S2, N4-N3S, N4-N2S2 and N3S-N2S2 containing meso-tolyl and meso-furyl porphyrin sub-units under mild Pd(0) mediated coupling conditions. Steady state fluorescence studies indicated an efficient energy transfer from the meso-tolyl porphyrin sub-unit to the meso-furyl porphyrin sub-unit in all six dyads. This study supported the argument that the meso-furyl porphyrins can be used as good energy acceptors when meso-aryl porphyrins act as energy donors in their metal free form.  相似文献   

5.
S. Punidha 《Tetrahedron》2008,64(34):8016-8028
Covalently linked diarylethyne bridged unsymmetrical porphyrin triad containing ZnN4, N4, and N2S2 porphyrin sub-units and porphyrin tetrad containing ZnN4, N4, N3S, and N2S2 porphyrin sub-units were synthesized over sequence of Pd(0) mediated coupling reactions. The triad and tetrad are freely soluble in all common organic solvents and characterized by ES-MS, NMR, absorption, fluorescence, and electrochemical techniques. The 1H NMR, absorption, and electrochemical studies indicated a weak interaction between the porphyrin sub-units of porphyrin triad and porphyrin tetrad. The steady state and time-resolved fluorescence studies supported an energy transfer from one end of porphyrin array to the other end. This kind of porphyrin arrays containing different porphyrin sub-units will be useful for molecular electronics applications.  相似文献   

6.
We adopted simple synthetic strategy to synthesize mono-functionalized thiasapphyrins containing functionalized aryl group in the meso-position at thiophene side. The thiasapphyrin building block containing iodophenyl functional group was coupled with three different porphyrin building blocks with N4, N3S and N2S2 cores containing meso-ethynylphenyl functional group under mild Pd(0) coupling conditions to synthesize three covalently linked diphenyl ethyne bridged porphyrin–thiasapphyrin dyads. The porphyrin–thiasapphyrin dyads were characterized by mass, NMR, absorption, electrochemical and fluorescence techniques. The NMR, absorption and electrochemical studies indicated that the two components in dyads interact weakly and retain their individual identities. The steady state fluorescence studies indicated that the porphyrin fluorescence is reduced to a significant extent because of energy and/or electron transfer to the thiasapphyrin unit. The protonation studies indicated that N4 porphyrin unit is more basic, whereas N3S and N2S2 porphyrin units are less basic compared to thiasapphyrin unit in respective dyads. We explored the potential of dyads as fluorescent anion sensors and showed that two out of three dyads can be used as fluorescent anion sensors.  相似文献   

7.
Heteroporphyrins resulted from the replacement of one or two pyrrolic nitrogens with other hetero atoms such as O, S, Se and Te possess very interesting and distinct properties compared to tetrapyrrolic porphyrins. Specially, the singlet state energy levels can be fine tuned with suitable modification of porphyrin core by substituting pyrrolic “N” with other hetero atoms such as “O” and “S”. In this review, we describe our synthetic approaches for the synthesis of various mono‐functionalized heteroporphyrin building blocks and their use in the synthesis of several covalently and non‐covalently linked unsymmetrical porphyrin dyads containing two different porphyrin sub‐units. The photophysical studies are also described to show the possibility of singlet‐singlet energy transfer from one porphyrin sub‐unit to another in these unsymmetrical porphyrin dyads.  相似文献   

8.
An approach which employs pentameric porphyrin arrays as building blocks toward larger porphyrin arrays is described. Two flexible, and one relatively rigid, Ru-centered porphyrin pentamers (1-3) were synthesized and fully characterized. Their potential as building blocks toward larger porphyrin arrays has been studied via their coordination chemistry using bidentate and tetradentate ligands. DABCO (diazabicyclo[2.2.2]octane) can bind two monomeric porphyrins but was found to be too small to allow the complete formation of a 10-porphyrin array. On the other hand, titration of a larger bridging dipyridyl porphyrin ligand 17 (0.5 equiv) with 1 or 2 and tetrapyridyl ligand 18 (0.25 equiv) with 3 results in the formation of the 11-porphyrin and 21-porphyrin arrays, respectively, with the 21-porphyrin array containing porphyrins in three different metalation states. Changes in the chemical shift of the inner NH protons as well as the ortho- and meso-protons of the pyridyl groups of the porphyrin ligand clearly indicate the formation of large multiple porphyrin complexes. These studies demonstrate that by use of carefully designed building blocks and suitable bridging ligands, porphyrin arrays can be constructed with a dramatic increase in size in relatively few steps. Exploiting the fact that the strength of binding of pyridyl ligands is Ru > Zn > Ni, intra- vs intermolecular competition has been used to investigate aspects of the folding of the array. The photophysical properties of 3 are also described.  相似文献   

9.
Click chemistry has been successfully applied in the synthesis of the first example of a triazole-bridged porphyrin dyad containing N(2)S(2) porphyrin and N(4) or ZnN(4) porphyrin subunits, and fluorescence study indicated a possibility of singlet-singlet energy transfer from the N(4) or ZnN(4) porphyrin subunit to the N(20S(2) porphyrin subunit.  相似文献   

10.
New aliphatic polyester-type dendrimers were synthesized using a new AB2-type building block 3, prepared from benzyl acetoacetate and 2 equiv of tert-butyl acrylate by acetoacetic acid ester synthesis. The reiterative [deprotection by HCO2H, then EDCI/DMAP coupling] sequence using divergent growth method gave [G1]-4tBu-[G5]-64tBu dendrimers. 13C NMR relaxation time (T1) measurements on the carboxy carbons show that the extended chain conformations are predominant in CDCl3. [structure: see text]  相似文献   

11.
The first direct synthesis of A3-type unsymmetrical porphyrin is achieved via conventional pyrrole–aldehyde condensation in a one-pot procedure in an appreciable yield. Generalization of this approach to a variety of other aldehydes revealed that it is advantageous for highly electron-rich aldehydes giving unsymmetrical porphyrin, while electron-poor aldehydes even failed to cyclize under the same experimental conditions.  相似文献   

12.
Two examples of supramolecular tetrads containing Sn(IV) porphyrin, expanded thiaporphyrins such as sapphyrin and rubyrin, and Ru(II) porphyrin assembled using non-interfering cooperative tin(IV)-oxygen and ruthenium(II)-nitrogen coordination properties are described. These are the first examples in which the expanded porphyrins are used as axial ligands. The tetrads were prepared by adopting one step as well as stepwise approaches. In a one pot approach, the mono meso-pyridyl dihydroxy Sn(IV) porphyrin, meso-hydroxyphenyl expanded thiaporphyrin, and Ru(II) porphyrin were reacted in benzene under refluxing conditions followed by column chromatographic purification on alumina to afford tetrads. In a stepwise approach, the axial bonding type of triads containing Sn(IV)porphyrin as central unit and expanded thiaporphyrins as axial ligands were synthesized first by reacting meso-pyridyl dihydroxy Sn(IV) porphyrin with meso-hydroxyphenyl expanded thiaporphyrin in benzene at refluxing temperature. In the next step, the triads were reacted with Ru(II) porphyrin under mild reaction conditions to afford tetrads in decent yields. Both methods worked efficiently and produced stable, soluble tetrads in decent yields. One-dimensional (1D) and two-dimensional (2D) NMR techniques were used to confirm the identity of these novel tetrads. Absorption and electrochemical studies indicated that the components in tetrads interact weakly and retain their individual characteristic features. The steady state photophysical studies revealed that the quantum yield of Sn(IV) porphyrin in tetrads was reduced significantly because of non-radiative decay pathways operating in these systems.  相似文献   

13.
Sokkalingam Punidha 《Tetrahedron》2004,60(38):8437-8444
A new method has been developed to synthesize 21,23-dithiaporphyrins having one pyridyl group at the meso position. The method required easily available unknown precursors and the condensation resulted in mono meso-pyridyl 21,23-dithiaporphyrins as single products in 8-11% yield. Two of the three mono meso-pyridyl N2S2 porphyrins were used to synthesize non-covalent unsymmetrical porphyrin dimers containing one N2S2 and one N4 porphyrin cores.  相似文献   

14.
Three Pd(II) complexes which are members of the same electron-transfer series have been synthesized. Refluxing of the reaction mixture containing equimolar amounts of PdCl(2), 2-(2-trifluoromethyl)anilino-4,6-di-tert-butylphenol (H(2)L(N,O)), 4,4'-di-tert-butyl-2,2'-dipyridyl ((t)bpy), and 3 equiv of triethylamine in MeOH under an argon atmosphere followed by exposure to air and addition of KPF(6) after cooling to room temperature yields reddish brown crystals of paramagnetic (S = 1/2) [Pd(L(N,O)(ISQ))((t)bpy)](PF6) (2). Reaction of 2 with one equiv of [CoCp2] in dry and degassed CH(2)Cl(2) using anaerobic conditions gives diamagnetic [Pd(L(N,O)(IP))((t)bpy)] (1), which is the one-electron reduced form of 2. One-electron oxidation of 2 in CH(2)Cl(2) under argon with one equiv of NOBF4 affords diamagnetic [Pd(L(N,O)(IBQ))((t)bpy)](PF6)(BF4).2CH(2)Cl(2) (3). Complexes 1, 2, and 3 constitute three members of the same electron-transfer series. They are ideally suited to distinctly distinguish the geometrical and spectroscopic features of the N,O-coordinated, closed-shell, diamagnetic o-iminophenolate (L(N,O)(IP))2-, the corresponding open-shell pi-radical o-iminobenzosemiquinonate (L(N,O)(ISQ))1-.(S(rad) = 1/2), and the closed-shell o-iminobenzoquinone (L(N,O)(IBQ))0 forms. All complexes were characterized by X-ray crystallography (100 K), cyclic voltammetry, EPR, and UV-vis spectroscopy. Complex 2 exhibits three reversible electron transfer waves in the cyclic voltammogram. Structural characterization of complex 3 reveals an interesting strong ion pairing between the BF4 anion and the complex dication with a short C-F distance of 2.7 A.  相似文献   

15.
To investigate new architectures for the self-assembly of multiporphyrin arrays, a one-flask synthesis of a shape-persistent cyclic hexameric array of porphyrins was exploited to prepare six derivatives bearing diverse pendant groups. The new arrays contain 6-12 carboxylic acid groups, 12 amidino groups, 6 thiol groups, or 6 thiol groups and 6 carboxylic acid groups in protected form (S-acetylthio, TMS-ethyl, TMS-ethoxycarbonyl). The arrays contain alternating Zn and free base (Fb) porphyrins or all Zn porphyrins. The one-flask synthesis entails a template-directed, Pd-mediated coupling of a p/p'-substituted diethynyl Zn porphyrin and a m/m'-substituted diiodo Fb porphyrin. The porphyrin building blocks (trans-A(2)B(2), trans-AB(2)C) contain the protected pendant groups at nonlinking meso positions. A self-assembled monolayer (SAM) of a Zn(3)Fb(3) cyclic hexamer containing one thiol group on each porphyrin was prepared on a gold electrode and the surface-immobilized architecture was examined electrochemically. Together, the work reported herein provides cyclic hexameric porphyrin arrays for studies of self-assembly in solution or on surfaces.  相似文献   

16.
Kin-ya Tomizaki 《Tetrahedron》2004,60(9):2011-2023
Four new porphyrin dyads have been prepared for studies in artificial photosynthesis. The two porphyrins are joined at the meso positions via a phenylethyne linker and are present in zinc/zinc or zinc/free base metalation states. The porphyrin bearing the ethynyl unit incorporates zero, one, or two pentafluorophenyl groups at non-linking meso positions for tuning the porphyrin redox potentials. The synthetic approach entailed Pd-mediated coupling of porphyrin building blocks that bear a single ethynylphenyl or bromo/iodo substituent.  相似文献   

17.
The syntheses of eight new star-shaped D(3)-symmetric arrays in which three 15-(pyrid-4-yl)porphyrin subunits are attached to the 1, 3, and 5 positions of a benzene core through linkers consisting of collinear repetitive phenylethynyl units have been carried out using Pd(0)-catalyzed coupling reactions. By the same procedure, an analogous 10-(4-pyridin-yl)porphyrin hexamer in which all positions of the benzene core are substituted has been obtained. Likewise, the preparation of suitably sized cyclic porphyrin hexamers, in which all six or at least three alternate porphyrin rings are complexed with Zn(II) ions, is described in detail. In solution, such cyclic porphyrin hexamers form supramolecular assemblies with the star-shaped polyporphyrins in which the latter are held in the interior of the macrocycle through coordination of the apical pyridine rings with the Zn(II) ions. The suggested structures are supported by (1)H NMR spectroscopic and MALDI-TOF mass spectrometric measurements. They agree with the high values of the binding constants of the corresponding supramolecules, which range between K = 1.1 x 10(10) and 1.4 x10(9) M(-1).  相似文献   

18.
A methodology for the stepwise construction of shape-persistent assemblies using snowflake-shaped dendrimers as the key modular building blocks was described. The Sonogashira coupling reaction of A3B-type Zn-porphyrin with A4-type free-base porphyrin afforded a cross-shaped covalent assembly. Intramolecular singlet energy transfer from peripheral Zn-porphyrin core to a free-base porphyrin core was observed.  相似文献   

19.
The reaction of 2 equiv of the bulky ligand N,N'-bis(3,5-di-tert-butylphenyl)-1,2-phenylenediamine, H2[3L(PDI)], excess triethylamine, and 1 equiv of M(CH3CO2)2.4H2O (M = Ni, Co) in the presence of air in CH3CN/CH2Cl2 solution yields violet-black crystals of [Ni(II)(3L(ISQ))2] CH3CN (1) or violet crystals of [Co(3L)2] (3). By using Pd(CH3CO2)2 as starting material, green-blue crystals of [Pd(II)(3L(ISQ))2].CH3CN (2) were obtained. Single-crystal X-ray crystallography revealed that 1 and 3 contain (pseudo)tetrahedral neutral molecules [M(3L)2] (M = Ni, Co) whereas in 2 nearly square planar, neutral molecules [Pd(II)(3L(ISQ))2] are present. Temperature-dependent susceptibility measurements established that 1 and 2 are diamagnetic (S = 0) whereas 3 is paramagnetic with an S = 3/2 ground state. It is shown that 1 contains two pi radical benzosemiquinonate(1-)-type monoanions, ((3L(ISQ))(1-*), S(rad) = 1/2), and a central Ni(II) ion (d8; S = 1) which are antiferromagnetically coupled yielding the observed S(t) = 0 ground state. This result has been confirmed by broken symmetry DFT calculations of 1. In contrast, the S(t) = 3/2 ground state of 3 is more difficult to understand: the two resonance structures [Co(III)(3L(ISQ))(3L(PDI))] <--> [Co(II)(3L(PDI))(3L(IBQ))] might be invoked (for tetrahedral [Co(II)(3L(ISQ))2] containing an S(Co) = 3/2 with two antiferromagnetically coupled pi-radical ligands an S(t) = 1/2 is anticipated). Complex 2 is diamagnetic (S = 0) containing a Pd(II) ion (d8, S(Pd) = 0 in an almost square planar ligand field) and two antiferromagnetically coupled ligand radicals (S(rad) = 1/2). The electrochemistry and spectroelectrochemistry of 1, 2, and 3 have been studied, and electron-transfer series comprising the species [M(L)2]z (z = 2+, 1+, 0, 1-, 2-) have been established. All oxidations and reductions are ligand centered.  相似文献   

20.
Three new nanoscopic trigonal prisms, [(tmen)(6) Pd(6) (H(2)L)(3)](NO(3))(12) (1), [(Meen)(6) Pd(6)(H(2) L)(3)](NO(3))(12) (2), and [(2,2'-bipy)(6)Pd(6) (H(2)L)(3)](NO(3))(12) (3), have been synthesized in excellent yields through single-step metal-ligand-coordination-driven self-assembly using 5,10,15,20-tetrakis(3-pyridyl)porphyrin (H(2)L) as a donor and cis-blocked Pd(II) 90° acceptors. These complexes were fully characterized by spectroscopic studies and single-crystal X-ray diffraction. All of these barrels quantitatively bind Zn(II) ions in the N(4) pockets of the porphyrin walls at room temperature. Their corresponding zinc-embedded complexes, [(tmen)(6)Pd(6)(ZnL)(3)](NO(3))(12) (1?a), [(Meen)(6) Pd(6)(ZnL)(3)](NO(3))(12) (2?a), and [(2,2'-bipy)(6)Pd(6)(ZnL)(3)](NO(3))(12) (3?a), were synthesized under ambient conditions by the post-synthetic binding of Zn(II) ions into the H(2)N(4) pockets of the porphyrin walls of these complexes. These zinc-embedded complexes were characterized by electronic absorption, fluorescence emission, (1)H?NMR spectroscopy, as well as elemental analysis. Complexes 1-3 exhibited considerable microporosity in their solid state. Complex 1 was an efficient adsorbent for nitrogen gas and EtOH, MeOH, and water vapors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号