首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
The use of peptides in medicine is limited by low membrane permeability, metabolic instability, high clearance, and negligible oral bioavailability. The prediction of oral bioavailability of drugs relies on physicochemical properties that favor passive permeability and oxidative metabolic stability, but these may not be useful for peptides. Here we investigate effects of heterocyclic constraints, intramolecular hydrogen bonds, and side chains on the oral bioavailability of cyclic heptapeptides. NMR‐derived structures, amide H–D exchange rates, and temperature‐dependent chemical shifts showed that the combination of rigidification, stronger hydrogen bonds, and solvent shielding by branched side chains enhances the oral bioavailability of cyclic heptapeptides in rats without the need for N‐methylation.  相似文献   

2.
A mass spectrometry and Density Functional Theory study of gas-phase H/D exchange in protonated Ala, Cys, Ile, Leu, Met, and Val is reported. Site-specific rate constants were determined and results identify the alpha-amino group as the protonation site. Lack of exchange on the Cys thiol group is explained by the absence of strong intramolecular hydrogen bonding within the reaction complex. In aliphatic amino acids the presence of a methyl group at the beta-C atom was found to lower the site-specific H/D exchange rate for amino hydrogens. Study of the exchange mechanism showed that isotopic exchange occurs in two independent reactions: in one, only the carboxylic hydrogen is exchanged and in the other, both carboxylic and amino group hydrogens exchange. The proposed reaction mechanisms, calculated structures of various species, and a number of structural findings are consistent with experimental data.  相似文献   

3.
Gas-phase H/D exchange experiments with CD3OD and D2O and quantum chemical ab initio G3(MP2) calculations were carried out on protonated histidine and protonated histidine methyl ester in order to elucidate their bonding and structure. The H/D exchange experiments show that both ions have three equivalent fast hydrogens and one appreciably slower exchangeable hydrogen assigned to the protonated amino group participating in a strong intramolecular hydrogen bond (IHB) with the nearest N(sp2) nitrogen of the imidazole fragment and to the distal ring NH-group, respectively. It is taken for granted that the proton exchange in the IHB is much faster than the H/D exchange. Unlike in other protonated amino acids (glycine, proline, phenylalanine, tyrosine, and tryptophan) studied earlier, the exchange rate of the carboxyl group in protonated histidine is slower than that of the amino group. The most stable conformers and the enthalpies of neutral and protonated histidine and its methyl ester are calculated at the G3(MP2) level of theory. It is shown that strong intramolecular hydrogen bonding between the amino group and the imidazole ring nitrogen sites is responsible for the stability and specific properties of the protonated histidine. It is found that the proton fluctuates between the amino and imidazole groups in the protonated form across an almost vanishing barrier. Proton affinity (PA) of histidine calculated by the G3(MP2) method is 233.2 and 232.4 kcal mol(-1) for protonation at the imidazole ring and at the amino group nitrogens, respectively, which is about 3-5 kcal mol(-1) lower than the reported experimental value.  相似文献   

4.
The self-assembly of cyclic D,L-alpha-peptides into hollow nanotubes is a crucial mechanistic step in their application as antibacterial and drug-delivery agents. To understand this process, molecular dynamics (MD) simulations were performed on dimers of cyclic peptides formed from cyclo [(-L-Trp-D-N-MeLeu-)4-]2 and cyclo [(-L-Trp-D-Leu-)4-]2 subunits in nonpolar (nonane) and polar (water) solvent. The dimers were observed to be stable only in nonpolar solvent over the full 10 ns length of the MD trajectory. The behavior of the dimers in different solvents is rationalized in terms of the intersubunit hydrogen bonding, hydrogen bonding with the solvent, and planarity of the rings. It is shown that the phi and psi dihedral angles of a single uncapped ring in nonane lie in the beta-sheet region of the Ramachandran plot, and the ring stays in a flat conformation. Steered MD (SMD) simulations based on Jarzynski's equality were performed to obtain the potential of mean force as a function of the distance between the two rings of the capped dimer in nonane. It is also shown that a single peptide subunit prefers to reside close to the nonane/water interface rather than in bulk solvent because of the amphiphilic character of the peptide ring. The present MD results build the foundation for using MD simulations to study the mechanism of the formation of cyclic peptide nanotubes in lipid bilayers.  相似文献   

5.
Photoinduced electron transfer (ET) reactions between coumarin dyes and N,N-dimethylaniline have been investigated inside niosome, a nonionic innocuous polyethylene glycol (PEG)-based surfactant assembly using steady state and time-resolved fluorescence measurements. The location of coumarin dyes inside the bilayer headgroup region of niosome has been reported and it was verified by determination of the high distribution coefficient of all the dyes inside niosome compared to bulk water. Fluorescence anisotropy parameters of the dyes inside niosome are also in good correlation with the above inference about their location. Bimolecular diffusion guided rates inside niosome were determined by comparing the microviscosities inside niosome and in acetonitrile and butanol solutions and it was found that diffusion of the donor and the acceptor is much slower than the ET rates, implying insignificant role of reactant diffusion in ET reaction inside niosome. We have observed a Marcus inversion region in our restricted media, which shows maxima at lower exergonicity. Such behavior has been demonstrated by the presence of nonequilibrium solvent excited state using two dimensional ET (2DET) theory. Unusually high quenching rates of two coumarins C-152 and C-152A inside niosome were explained by the presence of a stable non-fluorescent twisted intramolecular charge transfer (TICT) state along with an emissive intramolecular charge transfer (ICT) state. Moreover, intermolecular hydrogen bonding between carbonyl oxygens of these two dyes and water in their non-emissive and emissive charge transfer states also plays a key role in their dynamical exchange with each other [G.-J. Zhao and K.-L. Han, Acc. Chem. Res., 2011].  相似文献   

6.
While there is extensive information on 1,8-di(amino)naphthalene (i.e., the parent compound of the "proton sponge" series), the corresponding phosphorus compound has not been described. A high-yield synthesis of 1,8-di(phosphinyl)naphthalene (9) and the 1-naphthylphosphine reference compound (4) is now reported. Thermal decomposition of 9 leads to intramolecular dehydrogenative P-P coupling to afford 1,2-dihydro-1,2-diphosphaacenaphthene (10). Protonation of 9 and 4 with CF(3)SO(3)H gives quantitative yields of the monophosphonium salts 11 and 5, respectively. With excess acid and traces of moisture, the hydronium salt [C(10)H(6)(PH(2))(PH(3))](+)[H(3)O](+)2[CF(3)SO(3)](-) (13) is obtained. The structures of 9, 11, and 13 have been determined. Molecules of 9 have a planar naphthalene skeleton, C(10)H(6)P(2), with the two -PH(2) groups in a transoid conformation. The molecules form loose dimers in the crystal, the individual chiral enantiomers of which are related by a center of inversion. In contrast to the situation for the amino analogue, and despite the proximity of the two -PH(2) functions, there is no intra- or intermolecular hydrogen bonding. Solutions of 9 (in CD(2)Cl(2)) show equivalent P-bound hydrogen atoms due to conformational fluctionality. By analysis of the ABCD(2)XX'D'(2)C'B'A' spin system, it was shown that, in 9, there are strong through-space pericouplings [(n)J(P(X)P(X)(')) = 221.6 Hz, (n)J(P(X)H(D)(')) = 31.7 Hz, (n)J(H(D)H(D)(')) = 3.9 Hz]. In the cations of 11, the C(10)H(6)P(2) skeleton is also planar (by C(s) symmetry), with the -PH(2) and -PH(3)(+) groups in a conformation which rules out any P-H...P hydrogen bonding. The hydronium cation and the two triflate anions in 13 are associated into an anionic network through extensive hydrogen bonding surrounding stacks of the phosphonium cations. In solution, the cations of 11 and 13 show separate (31)P resonances for the two phosphorus atoms with fully resolved (1)J(PH) couplings, which indicate that there is no intra- or intercationic proton exchange. By contrast, the NMR spectra of solutions of [C(10)H(6)(NH(2))(NH(3))](+)X(-) salts show proton scrambling equilibrating all five N-bound hydrogen atoms, and in the crystal, the conformations of the cations feature intramolecular N-H...N hydrogen bonding.  相似文献   

7.
A large number of macrocycles containing alternating repeats of cystine diOMe(-NH-CH(CO(2)Me)-CH(2)-S-)(2) and either a conformationally rigid aromatic/alicyclic moiety or a flexible polymethylene unit (X) in the cyclic backbone with ring size varying from 13- to 78-membered have been examined by spectral ((1)H NMR, FT-IR, CD) and X-ray crystallography studies for unusual conformational preferences. While (1)H NMR measurements indicated a turnlike conformation for all macrocycles, stabilized by intramolecular NH.CO hydrogen bonding, as also supported by FT-IR spectra in chloroform, convincing proof for beta-turn structures was provided by circular dichroism studies. Single-crystal X-ray studies on 39-membered cyclo (Adm-L-Cyst)(3) revealed a double-helical fold (figure-eight motif) for the macrocycle. Only a right-handed double helix was seen in the macrocycle constructed from L-cystine. The mirror-image macrocycle made up of D-cystine units exhibited a double helix with exactly the opposite screw sense, as expected. The enantiomeric figure-eights were stabilized by two intramolecular NH. CO hydrogen bonds and exhibited identical (1) H NMR and FT-IR spectra. The CD spectra of both isomers had a mirror-image relationship. The present results have clearly brought out the importance of cystine residues in inducing turn conformation that may be an important deciding factor for the adoption of topologically important structures by macrocycles containing multiple S-S linkages.  相似文献   

8.
One advantage of detecting amide H/2H exchange by mass spectrometry instead of NMR is that the more rapidly exchanging surface amides are still detectable. In this study, we present quench-flow amide H/2H exchange experiments to probe how rapidly the surfaces of two different proteins exchange. We compared the amide H/2H exchange behavior of thrombin, a globular protein, and IkappaBalpha, a nonglobular protein, to explore any differences in the determinants of amide H/2H exchange rates for each class of protein. The rates of exchange of only a few of the surface amides were as rapid as the "intrinsic" exchange rates measured for amides in unstructured peptides. Most of the surface amides exchanged at a slower rate, despite the fact that they were not seen to be hydrogen bonded to another protein group in the crystal structure. To elucidate the influence of the surface environment on amide H/2H exchange, we compared exchange data with the number of amides participating in hydrogen bonds with other protein groups and with the solvent accessible surface area. The best correlation with amide H/2H exchange was found with the total solvent accessible surface area, including side chains. In the case of the globular protein, the correlation was modest, whereas it was well correlated for the nonglobular protein. The nonglobular protein also showed a correlation between amide exchange and hydrogen bonding. These data suggest that other factors, such as complex dynamic behavior and surface burial, may alter the expected exchange rates in globular proteins more than in nonglobular proteins where all of the residues are near the surface.  相似文献   

9.
Photoelectron spectra of singly charged dicarboxylate anions HO(2)C(CH(2))(n)CO(2)(-) (n = 1-10) are obtained at two different temperatures (300 and 70 K) at 193 nm. The electron binding energies of these species are observed to be much higher than the singly charged monocarboxylate anions, suggesting that the singly charged dicarboxylate anions are cyclic due to strong intramolecular hydrogen bonding between the terminal -CO(2)H and -CO(2)(-) groups. The measured electron binding energies are observed to depend on the chain length, reflecting the different -CO(2)H...(-)O(2)C- hydrogen bonding strength as a result of strain in the cyclic conformation. A minimum binding energy is found at n = 5, indicating that its intramolecular hydrogen bond is the weakest. At 70 K, all spectra are blue shifted relative to the room-temperature spectra with the maximum binding energy shift occurring at n = 5. These observations suggest that the cyclic conformation of HO(2)C(CH(2))(5)CO(2)(-) (a ten-membered ring) is the most strained among the 10 anions. The present study shows that the -CO(2)H...(-)O(2)C- hydrogen bonding strength is different among the 10 anions and it is very sensitive to the strain in the cyclic conformations.  相似文献   

10.
Investigating gas-phase structures of protein ions can lead to an improved understanding of intramolecular forces that play an important role in protein folding. Both hydrogen/deuterium (H/D) exchange and ion mobility spectrometry provide insight into the structures and stabilities of different gas-phase conformers, but how best to relate the results from these two methods has been hotly debated. Here, high-field asymmetric waveform ion mobility spectrometry (FAIMS) is combined with Fourier-transform ion cyclotron resonance mass spectrometry (FT/ICR MS) and is used to directly relate ubiquitin ion cross sections and H/D exchange extents. Multiple conformers can be identified using both methods. For the 9+ charge state of ubiquitin, two conformers (or unresolved populations of conformers) that have cross sections differing by 10% are resolved by FAIMS, but only one conformer is apparent using H/D exchange at short times. For the 12+ charge state, two conformers (or conformer populations) have cross sections differing by <1%, yet H/D exchange of these conformers differ significantly (6 versus 25 exchanges). These and other results show that ubiquitin ion collisional cross sections and H/D exchange distributions are not strongly correlated and that factors other than surface accessibility appear to play a significant role in determining rates and extents of H/D exchange. Conformers that are not resolved by one method could be resolved by the other, indicating that these two methods are highly complementary and that more conformations can be resolved with this combination of methods than by either method alone.  相似文献   

11.
A method of diffusion coefficient (D) measurement for proteins based on the pulsed laser-induced transient grating method using a photosensitive cross-linker was applied to the characterization of the pH denaturation process of holo- and apo-myoglobin (Mb) from the viewpoint of protein-water interaction. It was found that the pH denaturation curve monitored by D agrees quite well with that determined by the circular dichroism intensity for holo-Mb. This fact indicates that the changes in intermolecular interaction and the alpha-helix content occur simultaneously during the unfolding process. However, the pH dependence of D for apo-Mb was different from that of alpha-helix content. This different behavior can be explained in terms of the different denaturation steps for the secondary structure and the hydrogen bonding network of the intermediate species around pH 4; i.e., this intermediate is partially unfolded, but the hydrogen bonding network is dominantly an intramolecular one. Taking previously reported properties of this species into account, we conclude that water molecules are trapped in the hydrophobic core of the apo-Mb pH 4 intermediate. This fact suggests that the kinetic intermediate state of the protein folding process is a swollen state without water molecular exchange with the bulk phase.  相似文献   

12.
Previously, an artificial siderophore complex, the iron(III) complex with tris[2-[(N-acetyl-N-hydroxy)glycylamino]ethyl]amine (TAGE), was constructed in order to understand the effect of intramolecular hydrogen bonding interaction on the siderophore function, and its structural characterization in the solid state was reported (Inorg. Chem. 2001, 40, 190). In this paper, the solution behavior of the M(III)-TAGE (M = Fe, Ga) system has been investigated using (1)H NMR, UV-vis, and FAB mass spectroscopies in efforts to characterize the biological implication of hydrogen bonding networks between the amide hydrogens and coordinating aminohydroxy oxygens of the complex. The temperature dependence of (1)H NMR spectra for Ga(III) complex of TAGE indicates that hydrogen bonding networks are maintained in polar solvents such as DMSO-d(6) and D(2)O. The UV-vis spectra of the Fe(III)-TAGE system under various pH conditions have shown that TAGE forms a tris(hydroxamato)iron(III) complex in an aqueous solution in the pH range 4-8. By contrast, tris[2-[(N-acetyl-N-hydroxy)propylamido]ethyl]amine (TAPE; TAGE analogue that is difficult to form intramolecular hydrogen bonding networks), which has been synthesized as a comparison of TAGE, forms both of bis- and tris(hydroxamato)iron(III) complexes in the same pH range. Both the stability constants (log beta(FeTAGE) = 28.6; beta(FeTAGE) = [Fe(III)TAGE]/([Fe(3+)][TAGE(3)(-)])) and pM (-log[Fe(3+)]) value for Fe(III)TAGE (pM 25) are comparable to those of a natural siderophore ferrichrome (log beta = 29.1 and pM 25.2). The kinetic study of the TAGE-Fe(III) system has given the following rate constants: the rate of the ligand exchange reaction between Fe(III)TAGE and EDTA is 6.7 x 10(-4) s(-1), and the removal rates of iron from diferric bovine plasma transferrin by TAGE are 2.8 x 10(-2) and 6.0 x 10(-3) min(-1). These values are also comparable to those of a natural siderophore desferrioxamine B under the same conditions. In a biological activity experiment, TAGE has promoted the growth of the siderophore-auxotroph Gram-positive bacterium Microbacterium flavescens, suggesting that TAGE mimics the activity of ferrichrome. These results indicate that the artificial siderophore with intramolecular hydrogen bonding networks, TAGE, is a good structural and functional model for a natural ferrichrome.  相似文献   

13.
Reaction of piperazine and 1,3-bis(bromomethyl)-2-nitrobenzene under high-dilution conditions yields cyclic trimeric trinitro, tetrameric tetranitro, and pentameric pentanitro piperazine cyclophanes. Reduction of the nitro groups with SnCl(2) under acidic conditions produces the corresponding triamino and tetraamino piperazine cyclophanes. The solution studies of both nitro and amino piperazine cyclophanes at 30 degrees C by (1)H NMR spectroscopy shows symmetrical structures owing to the fast conformational exchange, whereas the low temperature studies of the tetraamino piperazine cyclophane reveals interesting dynamic behavior that indicates additional intramolecular interactions. Careful crystallizations of the trimeric trinitro and triamino and the tetrameric tetraamino cyclophanes resulted in crystals suitable for X-ray diffraction studies. In the crystalline state the amino-functionalized cyclophanes manifest an extraordinary circular intramolecular hydrogen-bonding network that leads to a fixed 3D structure. Hydrogen bonding in the triamino trimer leads to orientation of all three of the amino groups on the same side of the macrocycle, namely, the rcc conformation, whereas the tetraamino tetramer folds into a more compact shell-like conformation. During the crystallization process one acetonitrile guest is enclosed into the cavity of the tetraamino cyclophane, which gives a crystalline inclusion complex with remarkable resemblance to the famous Pacman motif. The folding, which mimics the behavior of some cyclic peptides and pyrroles, is induced by intramolecular hydrogen bonding from the amino groups to the tertiary amine groups of the piperazines. The cavity of the tetraamino tetramer is markedly smaller than in the corresponding, but nonfolded, tetranitro tetramer and the guest/host volume ratio (packing coefficient) for the acetonitrile and the cavity is approximately 50 %, which indicates a good size match for acetonitrile inclusion.  相似文献   

14.
The gas-phase structures of protonated (deoxy)nucleoside-5'- and 3'-monophosphates (mononucleotides) have been examined by the use of gas-phase hydrogen/deuterium (H/D) exchange and high-field Fourier-transform ion cyclotron resonance mass spectrometry. These nucleotides were reacted with three different deuterating reagents: ND3, D2O, and D2S, of which ND3 was the most effective. All mononucleotides fully exchanged their labile hydrogen for deuterium with ND3 with the exception of deoxycytidine-3'-monophosphate, deoxyadenosine-5'-monophosphate, adenosine-5'-monophosphate, and adenosine-3'-monophosphate. Semiempirical calculations demonstrate the presence of hydrogen bonding upon protonation of the purine mononucleotides which may lead to incomplete H/D exchange. H/D exchange rates differed between the deoxymononucleotides and the ribomononucleotides, suggesting that the 2'-OH group plays an important role in the exchange process. Reactions of nucleosides and mononucleotides with D2O demonstrate that a structure-specific long-lived ion-molecule complex between D2O and the mononucleotide involving the phosphate group is necessary for exchange to overcome the high-energy activation barrier. In contrast, a structure-specific long-lived ion-molecule complex between the mononucleotides and ND3 is not required for exchange to occur.  相似文献   

15.
In ferrocene‐1,1′‐diyl­bis­(di­phenyl­methanol)–2,2′‐dipyridyl­amine (1/1), [Fe(C18H15O)2]·C10H9N3, (I), there is an intramolecular O—H?O hydrogen bond [H?O 2.03 Å, O?O 2.775 (2) Å and O—H?O 147°] in the ferrocenediol component, and the two neutral molecular components are linked by one O—H?N hydrogen bond [H?N 1.96 Å, O?N 2.755 (2) Å and O—H?N, 157°] and one N—H?O hydrogen bond [H?O 2.26 Å, N?O 3.112 (2) Å and N—H?O 164°] forming a cyclic R(8) motif. One of the pyridyl N atoms plays no part in the intermolecular hydrogen bonding, but participates in a short intramolecular C—H?N contact [H?N 2.31 Å, C?N 2.922 (2) Å and C—H?N 122°].  相似文献   

16.
Nuria Armesto 《Tetrahedron》2006,62(23):5401-5410
Selective mono-functionalization of 3-epi, 4-epi-, and 5-epi quinic and shikimic acid derivatives has been accomplished by enzymatic acylation with Candida antarctica lipase A (CAL-A). We propose that the selectivity of this lipase is related to both the inherent receptor selectivity and the degree of intramolecular hydrogen bonding in the ligand. Conformational analysis of the hydroxyl protons has been carried out by 1H NMR spectroscopy. We have shown that exchange of the hydroxyl protons by acid catalysis provides a useful method for the detection of intramolecular hydrogen bonds. The interpretation of exchange rates and coupling constants determines the direction of the H-bonds as conditioned by the relative acceptor and donor properties of the hydroxyl groups. The selectivity of the acylation agrees fully with the effectiveness of H-bonding networks in polyol compounds and with the higher reactivity of the equatorial hydroxyl groups.  相似文献   

17.
A series of intramolecularly hydrogen-bonded N-substituted 3-(piperidine, morpholine, N-methylpiperazine)thiopropionamides and some corresponding amides have been studied with special emphasis on hydrogen bonding. The compounds have been selected in order to vary and to minimize the N...N distance. Geometries, charge distributions, and chemical shifts of these compounds are obtained from DFT-type BP3LYP calculations. 1H and 13C 1D and 2D NMR experiments were performed to obtain H,H coupling constants, 13C chemical shifts assignments, and deuterium isotope effects on13C chemical shifts. Variable-temperature NMR studies and 2D exchange NMR spectra have been used to describe the rather complicated conformational behavior mainly governed by the ring flipping of the piperidine (morpholine) rings and intramolecular hydrogen bonding. Unusual long-range deuterium isotope effects on 13C chemical shifts are observed over as far as eight bonds away from the site of deuteriation. The isotope effects are related to the N...N distances, thus being related to the hydrogen bonding and polarization of the N-H bond. Arguments are presented showing that the deuterium isotope effects on 13C chemical shifts originate in electric field effects.  相似文献   

18.
Mass analysis of proteolytic fragment peptides following hydrogen/deuterium exchange offers a general measure of solvent accessibility/hydrogen bonding (and thus conformation) of solution-phase proteins and their complexes. The primary problem in such mass analyses is reliable and rapid assignment of mass spectral peaks to the correct charge state and degree of deuteration of each fragment peptide, in the presence of substantial overlap between isotopic distributions of target peptides, autolysis products, and other interferant species. Here, we show that at sufficiently high mass resolving power (m/Δm50% ≥ 100,000), it becomes possible to resolve enough of those overlaps so that automated data reduction becomes possible, based on the actual elemental composition of each peptide without the need to deconvolve isotopic distributions. We demonstrate automated, rapid, reliable assignment of peptide masses from H/D exchange experiments, based on electrospray ionization FT-ICR mass spectra from H/D exchange of solution-phase myoglobin. Combined with previously demonstrated automated data acquisition for such experiments, the present data reduction algorithm enhances automation (and thus expands generality and applicability) for high-resolution mass spectrometry-based analysis of H/D exchange of solution-phase proteins.  相似文献   

19.
An electrospray ionization (ESI)/fast-flow technique has been applied to the study of gas phase hydrogen/deuterium (H/D) exchange kinetics. Multiply charged ubiquitin ions [ubiquitin + nH](n)(+), in charge states n = 7-13, were reacted with ND(3). The behavior of ND(3) as exchange reagent is different from that of the previously studied reagents, D(2)O and CH(3)OD. Contrary to those, the maximum number of exchanged hydrogen atoms and the overall exchange rate were observed to increase with increasing charge state of the ubiquitin ions. The results are reagent-dependent because the exchange mechanisms are different for the different reagents. This observation is in agreement with a recent conclusion by Beauchamp and co-workers that contrary to the assumption often expressed in earlier studies, H/D exchange kinetics may not directly reflect ion structures. The results for all three reagents are, however, consistent with observations of previous ion mobility experiments that with increasing charge state the conformers change from more compact, partially folded structures to elongated nearly linear ones. H/D exchange of (ubiquitin + 13H)(13+) with ND(3) leads to two separated ion populations reflecting the possible existence of two conformers with different exchange rates. The ions (ubiquitin + 8H)(8+) and (ubiquitin + 11H)(11+) represent a partially folded structure and an unfolded structure, respectively, and were studied in greater detail. The relative abundances of ions were measured in steps of 0.5 m/z (mass-to-charge ratio), as a function of the ND(3) flow rate. The experimental results were simulated by computer fitted curves based on a recently developed algorithm. The algorithm allows the extraction of sets of grouped rate constants. Eight rate constant groups were deduced for each of the two ions. These rate constants correspond to 32 and 44 H/D exchanges for the 8+ and 11+ charged ions, respectively. The results indicate higher individual rates for most of the exchanged atoms in the 11+ ion compared to the 8+ ion.  相似文献   

20.
A novel receptor possessing two complexation sites and bearing 1,3-alternate conformation based on thiacalix[4]arene, confirmed by single crystal X-ray analysis, was prepared. The tetrathiacalix[4]arene diamide shows strong intramolecular hydrogen bonding. The binding behavior towards K+ and halides has been examined by 1H NMR titration experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号