首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical model is constructed to predict transient opposed-flow flame spread behaviour in a channel flow over a melting polymer. The transient flame is established by initially applying a high external radiation heat flux to the surface. This is followed by ignition, transition and finally steady opposed-flow flame spread. The physical phenomena under consideration include the following: gas phase: channel flow, thermal expansion and injection flow from the pyrolyzed fuel; condensed phase: heat conduction, melting, and discontinuous thermal properties (heat capacity and thermal conductivity) across the phase boundary; gas-condensed phase interface: radiation loss. There is no in-depth gas radiation absorption in the gas phase. It is necessary to solve the momentum, species, energy and continuity equations in the gas along with the energy equation(s) in the liquid and solid. Agreement is obtained between the numerical spread rate and a flame spread formula. The influence of the gas flow is explored by comparing the Navier-Stokes (NS) and Oseen (OS) models. An energy balance analysis describes the flame-spread mechanism in terms of participating heat transfer mechanisms.  相似文献   

2.

Dynamics of flame kernel evolution with and without external energy addition has been investigated analytically and numerically. Emphasis is placed on the effects of radiation heat loss, ignition power and Lewis number on the correlation and transition between the initial flame kernel, the self-extinguishing flame, the flame ball, the outwardly propagating spherical flame and the propagating planar flame. The present study extends previous results by bridging the theories of the non-adiabatic stationary flame balls and travelling flames and allowing rigorous consideration of radiation heat losses. The results show that the effects of radiation heat loss play an important role in flame regimes and flame transition and result in a new isolated self-extinguishing flame. Furthermore, it is found that radiation heat losses significantly increase the critical ignition radius and result in three different dependences of the minimum ignition power on the Lewis number. Comparisons between the results from the transient numerical simulation and those from the quasi-steady state analysis show a good agreement. The results suggest that prediction of flame initiation without appropriate consideration of radiation is not acceptable.  相似文献   

3.
Ensuring robust ignition is critical for the operability of aeronautical gas-turbine combustors. For ignition to be successful, an important aspect is the ability of the hot gas generated by the spark discharge to initiate combustion reactions, leading to the formation of a self-sustained ignition kernel. This study focuses on this phenomena by performing simulations of kernel ignition in a crossflow configuration that was characterized experimentally. First, inert simulations are performed to identify numerical parameters correctly reproducing the kernel ejection from the ignition cavity, which is here modeled as a pulsed jet. In particular, the kernel diameter and the transit time of the kernel to the reacting mixture are matched with measurements. Considering stochastic perturbations of the ejection velocity of the ignition kernel, the variability of the kernel transit time is also reproduced by the simulations. Subsequently, simulations of a series of ignition sequences are performed with varying equivalence ratio of the fuel-air mixture in the crossflow. The numerical results are shown to reproduce the ignition failure that occurs for the leanest equivalence ratio (?=0.6). For higher equivalence ratios, the simulations are shown to capture the sensitivity of the ignition to the equivalence ratio, and the kernel successfully transitions into a propagating flame. Significant stochastic dispersion of the ignition strength is observed, which relates to the variability of the transit time of the kernel to the reactive mixture. An analysis of the structure of the ignition kernel also highlights the transition towards a self-propagating flame for successful ignition conditions.  相似文献   

4.
Recently, forced ignition by nanosecond-repetitive-pulsed-discharge (NRPD) has received great attention since it can greatly promote ignition. However, there is no theoretical analysis on ignition induced by multiple heating pulses such as NRPD. Therefore, this work attempts to provide a theoretical interpretation on the ignition of a quiescent, flammable mixture by multiple discharges and to assess the effects of repetitive pulse on ignition characteristics. Based on fully transient formulation, analytical expressions describing ignition kernel propagation induced by multiple pulses are derived. The key parameters of multiple pulse heating, such as energy distribution among individual pulse, intermittent duration between neighboring pulse and total pulse numbers are appropriately incorporated, and their effects on ignition characteristics are assessed. It is found that because of memory effect, the flame kernel continues to propagate after switching off the external heating source. Sequentially introducing identical heating pulses at appropriate intermittent duration repetitively exploits the memory effect during ignition kernel development and thus extends propagating distance of the flame front. The repetitive pulse heating can promote ignition capability due to the flame revitalization effect, i.e., ignition reinforcement to the flame front thanks to additional thermal energy supplied by subsequent pulse. This is consistent with the synergistic effect of NRPD observed in previous experimental studies. In particular, as the pulse number increases, the minimum ignition energy decreases and approaches to an asymptotic value. In the limit of large pulse number, it is found that the integration of the implicit expressions describing the ignition kernel evolution does not depend on the pulse number explicitly. This substantiates the invariance of minimum ignition energy with heating pulse number. The present theory explains the effects of multiple discharges on ignition and provides insights on ignition enhancement.  相似文献   

5.
Spark ignition, as the first step during the combustion in Otto engines, has a profound impact on the further development of the flame kernel. Over the last ten years growing concern for environment protection, including low emission of pollutants has increased the interest in the numerical simulation of ignition phenomena to guarantee successful flame kernel development even for lean mixtures.

However, the process of spark ignition in a combustible mixture is not yet fully understood. The use of detailed reaction mechanisms, combined with electrodynamical modelling of the spark, is necessary to optimize ignition of lean mixtures.

This work presents simulations of the coupling of flow, chemical reactions and transport with discharge processes in order to investigate the development of a stable flame kernel initiated by an electrical spark. A two-dimensional code to simulate the early stages of flame kernel formation, shortly after the breakdown discharge, has been developed. The model includes Joule heating. The spark plasma channel formed as a consequence of the breakdown is incorporated into the initial conditions. The computations include the initial phase (1–5 µs), which is governed by pressure wave formation, but also the transition to flame propagation. A thorough study of the influence of the electrodes' geometry, i.e. shape and size, and gap width, has been performed for air and a lean H2–air mixture. Also a detailed methane-air mechanism was chosen as another example including combustion.

Due to the fast expansion of the plasma channel, together with the geometrical complexity of the electrodes, a complicated flow field develops after the emission of a pressure wave by the expanding channel. Special numerical methods, including artificial viscosity, are required to resolve the complicated flow field during these first 1–5 µs. The heat release through chemical reactions and transport processes is almost negligible during this short phase. The second phase, i.e. the development of a propagating flame and the flame kernel expansion, can last up to several milliseconds and is dominated by diffusive processes and chemical reactions. It has been found that the geometry greatly influences the developing flame kernel and the flow field. As soon as chemical reactions begin to contribute significantly to the heat release, the effect becomes smaller.  相似文献   

6.
Fuel-stratified combustion has broad application due to its promising advantages in extension of lean flammability limit, improvement of flame stabilization, enhancement of lean combustion, etc. In the literature, there are many studies on flame propagation in fuel-stratified mixtures. However, there is little attention on ignition in fuel-stratified mixtures. In this study, one-dimensional numerical simulation is conducted to investigate the ignition and spherical flame kernel propagation in fuel-stratified n-decane/air mixtures. The emphasis is placed on assessing the effects of fuel stratification on the ignition kernel propagation and critical ignition condition. First, ignition and flame kernel propagation in homogeneous n-decane/air mixture are studied and different flame regimes are identified. The minimum ignition energy (MIE) of the homogeneous n-decane/air mixture is obtained and it is found to be very sensitive to the equivalence ratio under fuel-lean conditions. Then, ignition and flame kernel propagation in fuel-stratified n-decane/air mixture are investigated. The inner equivalence ratio and stratification radius are found to have great impact on ignition kernel propagation. The MIEs at different fuel-stratification conditions are calculated. The results indicate that for fuel-lean n-decane/air mixture, fuel stratification can greatly promote ignition and reduce the MIE. Six distinct flame regimes are observed for successful ignition in fuel-stratified mixture. It is shown that the ignition kernel propagation can be induced by not only the ignition energy deposition but also the fuel-stratification. Moreover, it is found that to achieve effective ignition enhancement though fuel stratification, one needs properly choose the values of stratification radius and inner equivalence ratio.  相似文献   

7.
The cycle to cycle combustion variability which is observed in spark-ignition engines is often caused by fluctuations of the early flame development. LES can be exploited for a better understanding and mastering of their origins. For that purpose appropriate models taking into account energy deposition, mixture ignition and transition to propagation are necessary requirements. This paper presents first DNS and LES of spark ignition with a real automotive coil and simplified pin-pin electrodes. The electrical circuit characteristics are provided by ISSIM while the energy deposition is modelled by Lagrangian particles. The ignition model is first evaluated in terms of initial spark radius on a pin-pin ignition experiment in pure air performed at CORIA and EM2C laboratories, showing that it pilots the radius of the torus formed by the initial shock wave. DNS of a quiescent lean propane/air mixture are then performed with this ignition system and a two-step mechanism. The impact of the modelled transferred energy during glow phase as well as the initial arc radius on the minimum ignition energy (MIE) are examined and compared to experimental values. Replacing the two-step chemistry by an analytically reduced mechanism leads to similar MIE but shows a different ignition kernel shape. Finally, LES of turbulent ignition using a Lagrangian arc model show a realistic prediction of the arc shape and its important role on the energy transfer location and thus on the flame kernel shape.  相似文献   

8.
Numerical computations and a series of experiments were conducted in microgravity to study the ignition characteristics of a thin polymethylmethacrylate (PMMA) sheet (thicknesses of 0.2 and 0.4 mm) using a CO2 laser as an external radiant source. Two separate ignition events were observed, including ignition over the irradiated surface (frontside ignition), and ignition, after some delay, over the backside surface (backside ignition). The backside ignition was achieved in two different modes. In the first mode, after the laser was turned off, the flame shrank and stabilized closer to the fuel surface. This allowed the flame to travel from the frontside to the backside through the small, open hole generated by the laser’s vaporization of PMMA. In the second mode, backside ignition was achieved during the laser irradiation. The numerical calculation simulating this second process predicts fresh oxygen supply flows from the backside gas phase to the frontside gas phase through the open hole, which mixes with accumulated hot MMA fuel vapor which is ignited as a second flame in the frontside gas phase above the hole. Then, the flame initiated from the second ignition travels through the hole to ignite the accumulated flammable mixture in the backside gas phase near the hole, attaining backside ignition. The first backside ignition mode was observed in 21% oxygen and the second backside ignition mode in 35%. The duration of the laser irradiation appears to have important effects on the onset of backside ignition. For example, in 21% oxygen, the backside ignition was attained after a 3 s laser duration but was not observed after a 6 s laser duration (within the available test time of 10 s). Longer laser duration might prevent two-sided ignition in low oxygen concentrations.  相似文献   

9.
Successful ignition in the recirculating flow of a scramjet flame holder can be highly dependent upon the location of energy deposition because of the spatial variation of fuel concentration and flow properties. The current work experimentally investigated ignition processes when energy was deposited (~100 mJ) via a spark discharge at four locations in the base of a cavity or by laser-induced breakdown in a Mach 2 flow with a stagnation temperature and pressure of 590 K and 483 kPa, respectively. The cavity was directly fueled with ethylene injection. The time dependent heat release was imaged at 40,000 frames per second and fuel concentration and distribution measurements were taken in the cavity prior to ignition. The average fuel concentration at the lean and rich ignition limits near the energy deposition locations measured 4.4–9.3% (Φ= 0.75 to 1.47). Energy deposition near the cavity step resulted in near immediate ignition kernel development and rapid achievement of self-sustained flame propagation in the front of the cavity, often faster than the bulk recirculation time of the cavity, leading to a spike in heat release. Energy deposition away from the cavity step region led to competition between local flow velocity, fuel concentration, and flame propagation rates. Ignition kernels formed along the floor of the cavity towards the closeout ramp and were rapidly advected towards the cavity step region before flame propagation could ensue. The fastest and most robust ignition events for all fueling cases showed rapid spanwise flame propagation near the cavity step.  相似文献   

10.
Systematic asymptotic methods are applied to the compressible conservation and state equations for a reactive gas, including transport terms, to develop a rational thermomechanical formulation for the ignition of a chemical reaction following time-resolved, spatially distributed thermal energy addition from an external source into a finite volume of gas. A multi-parameter asymptotic analysis is developed for a wide range of energy deposition levels relative to the initial internal energy in the volume when the heating timescale is short compared to the characteristic acoustic timescale of the volume. Below a quantitatively defined threshold for energy addition, a nearly constant volume heating process occurs, with a small but finite internal gas expansion Mach number. Very little added thermal energy is converted to kinetic energy. The gas expelled from the boundary of the hot, high-pressure spot is the source of mechanical disturbances (acoustic and shock waves) that propagate away into the neighbouring unheated gas. When the energy addition reaches the threshold value, the heating process is fully compressible with a substantial internal gas expansion Mach number, the source of blast waves propagating into the unheated environmental gas. This case corresponds to an extremely large non-dimensional hot-spot temperature and pressure. If the former is sufficiently large, a high activation energy chemical reaction is initiated on the short heating timescale. This phenomenon is in contrast to that for more modest levels of energy addition, where a thermal explosion occurs only after the familiar extended ignition delay period for a classical high activation reaction. Transport effects, modulated by an asymptotically small Knudsen number, are shown to be negligible unless a local gradient in temperature, concentration or velocity is exceptionally large.  相似文献   

11.
Diesel flame lift-off and stabilization in the presence of laser-ignition were numerically investigated with the method of Eulerian stochastic fields. The aim was to scrutinise the interaction between the lifted diesel flame and an ignition kernel upstream of the lifted flame. The numerical simulation was carried out in a constant-volume combustion vessel with n-heptane as fuel. The process was studied previously in an experiment employing Diesel #2 as the fuel in the same combustion vessel. In the experiment a lifted flame was first established at a position downstream of the nozzle. An ignition kernel was then initiated using a high-energy pulse laser at a position upstream of the natural lift-off position of the diesel flame. The laser-ignition kernel was modelled using a high-temperature (~2000 K) hot spot. In both experiment and simulations the upstream front of the ignition kernel was shown to remain around the initial laser ignition site for a substantially long period of time, while the downstream front of the ignition kernel propagates rapidly towards the natural lift-off position downstream of the laser ignition site. The lift-off position oscillated before the final stabilization at the natural lift-off position. The structures and the propagation speed of the reaction fronts in the laser-ignition kernel and the main flame were analysed. Two different stabilization mechanisms, the auto-ignition mechanism and the flame propagation mechanism, were identified for the naturally lifted flame and the laser-induced reaction front, respectively. A mechanism was proposed to explain the oscillation of the lift-off position.  相似文献   

12.
This study presents the comparison of the experimental results and theoretical predictions of the piloted ignition of black PMMA. The model for theoretical calculations included heat, momentum, mass transfer equations and reaction kinetics both in the gas phase and the solid phase, to comprehensively describe the piloted ignition. The experimental samples were thick black PMMA pieces, with the ignition time and the critical surface temperatures at ignition measured using a cone heater under different external radiation heat fluxes. The predictions from the calculations showed good agreement with the experiment at high heat flux, but the deviation was distinct at low heat fluxes, especially for the critical surface temperatures. The fail of the prediction at low heat fluxes was regarded, by analysis, as the result of the neglecting of the decomposition energy term of PMMA in the energy balance equation.  相似文献   

13.
Pilot-ignited dual fuel combustion involves a complex transition between the pilot fuel autoignition and the premixed-like phase of combustion, which is challenging for experimental measurement and numerical modelling, and not sufficiently explored. To further understand the fundamentals of the dual fuel ignition processes, the transient ignition and subsequent flame development in a turbulent dimethyl ether (DME)/methane-air mixing layer under diesel engine-relevant conditions are studied by direct numerical simulations (DNS). Results indicate that combustion is initiated by a two-stage autoignition that involves both low-temperature and high-temperature chemistry. The first stage autoignition is initiated at the stoichiometric mixture, and then the ignition front propagates against the mixture fraction gradient into rich mixtures and eventually forms a diffusively-supported cool flame. The second stage ignition kernels are spatially distributed around the most reactive mixture fraction with a low scalar dissipation rate. Multiple triple flames are established and propagate along the stoichiometric mixture, which is proven to play an essential role in the flame developing process. The edge flames gradually get close to each other with their branches eventually connected. It is the leading lean premixed branch that initiates the steady propagating methane-air flame. The time required for the initiation of steady flame is substantially shorter than the autoignition delay time of the methane-air mixture under the same thermochemical condition. Temporal evolution of the displacement speed at the flame front is also investigated to clarify the propagation characteristics of the combustion waves. Cool flame and propagation of triple flames are also identified in this study, which are novel features of the pilot-ignited dual fuel combustion.  相似文献   

14.
Direct Numerical Simulations of expanding flame kernels following localized ignition in decaying turbulence with the fuel in the form of a fine mist have been performed to identify the effects of the spray parameters on the possibility of self-sustained combustion. Simulations show that the flame kernel may quench due to fuel starvation in the gaseous phase if the droplets are large or if their number is insufficient to result in significant heat release to allow for self-sustained flame propagation for the given turbulent environment. The reaction proceeds in a large range of equivalence ratios due to the random location of the droplets relative to the igniter location that causes a wide range of mixture fractions to develop through pre-evaporation in the unreacted gas and through evaporation in the preheat zone of the propagating flame. The resulting flame exhibits both premixed and non-premixed characteristics.  相似文献   

15.
A theoretical model is developed to describe the spherical flame initiation and propagation. It considers endothermic chain-branching reaction and exothermic recombination reaction. Based on this model, the effects of endothermic chain-branching reaction on spherical flame initiation and propagation are assessed. First, the analytical solutions for the distributions of fuel and radical mass fraction as well as temperature are obtained within the framework of large activation energy and quasi-steady assumption. Then, a correlation describing spherical flame initiation and propagation is derived. Based on this correlation, different factors affecting spherical flame propagation and initiation are examined. It is found that endothermicity of the chain-branching reaction suppresses radical accumulation at the flame front and thus reduces flame intensity. With the increase of endothermicity, the unstretched flame speed decreases while both flame ball radius and Markstein length increases. Endothermicity has a stronger effect on the stretched flame speed with larger fuel Lewis number. The Markstein length is found to increase monotonically with endothermicity. Furthermore, the endothermicity of the chain-branching reaction is shown to affect the transition among different flame regimes including ignition kernel, flame ball, propagating spherical flame, and planar flame. The critical ignition power radius increases with endothermicity, indicating that endothermicity inhibits the ignition process. The influence of endothermicity on ignition becomes relatively stronger at higher crossover temperature or higher fuel Lewis number. Moreover, one-dimensional transient simulations are conducted to validate the theoretical results. It is shown that the quasi-steady-state assumption used in theoretical analysis is reasonable and that the same conclusion on the effects of endothermic chain-branching reaction can be drawn from simulation and theoretical analysis.  相似文献   

16.
The effects of unsteady strain on hydrogen (H2) ignition in nonpremixed flows are investigated with both experimental measurements and numerical computations. A mixing layer is established in a counterflow configuration with a fuel stream containing N2–diluted H2 (XH2=0.08) flowing against heated air. A reproducible ignition process is initiated by introducing atomic oxygen into the mixing layer with a pulsed ArF excimer laser, which photodissociates heated O2 from the oxidizer stream. The temporal evolution of OH during ignition is measured by planar laser-induced fluorescence. Following the induction phase, the measured OH mole fraction increases rapidly to a super-equilibrium value that is 60% greater than the OH mole fraction in a steady diffusion flame. The peak OH mole fraction occurs at approximately 6 ms after the excimer laser pulse. To study the OH time history under transient strain, the fuel stream is pulsed at a fixed time after the initiation of ignition. The response of the ignition kernel is extremely sensitive to the time delay of the flow transient. The unsteady strain can delay the ignition time or extinguish the kernel. Comparisons between computations and experiments are made for the evolution of OH during autoignition both for steady and unsteady strain. For both steady and unsteady strain, the transient one-dimensional counterflow computations show excellent agreement with the experiment in terms of predicting ignition delays and the rate of OH accumulation during the induction period. The computations also capture the super-equilibrium OH during the transition to the formation of a steady flame, although not to the degree observed experimentally. The computations are further used to understand the influence of unsteady strain on the kernel evolution. It is found that the degree of super-equilibrium OH is sensitive to strain transients applied close to the time of thermal runaway.  相似文献   

17.
Characteristics of gas-phase ignition of grinded brown coal (brand 2B, Shive-Ovoos deposit in Mongolia) layer by single and several metal particles heated to a high temperature (above 1000 K) have been investigated numerically. The developed mathematical model of the process takes into account the heating and thermal decomposition of coal at the expense of the heat supplied from local heat sources, release of volatiles, formation and heating of gas mixture and its ignition. The conditions of the joint effect of several hot particles on the main characteristic of the process–ignition delay time are determined. The relation of the ignition zone position in the vicinity of local heat sources and the intensity of combustible gas mixture warming has been elucidated. It has been found that when the distance between neighboring particles exceeds 1.5 hot particle size, an analysis of characteristics and regularities of coal ignition by several local heat sources can be carried out within the framework of the model of “single metal particle / grinded coal / air”. Besides, it has been shown with the use of this model that the increase in the hot particle height leads, along with the ignition delay time reduction, to a reduction of the source initial temperatures required for solid fuel ignition. At an imperfect thermal contact at the interface hot particle / grinded coal due to the natural porosity of the solid fuel structure, the intensity of ignition reduces due to a less significant effect of radiation in the area of pores on the heat transfer conditions compared to heat transfer by conduction in the near-surface coal layer without regard to its heterogeneous structure.  相似文献   

18.
Large-Eddy Simulations with the Conditional Moment Closure sub-grid combustion model and detailed chemistry for kerosene were performed for the ignition process in an Rich-Quench-Lean aviation gas turbine combustor at high-altitude conditions. The simulations used realistic boundary conditions for the flow inlet and spray droplet size distributions and velocity. Due to the large droplets, the Central Recirculation Zone (CRZ) is filled with fuel, mostly in liquid form. The first phase of the ignition process is critical and the results show that the spark kernel must provide enough energy to evaporate the spray and pyrolyse the fuel for the flame to grow and establish in the corner of the combustor. The second phase is characterised by the flame burning the mixture in the scorner and propagating around the Inner Shear Layer. This phase is also critical, as the flame needs the prevaporised fuel and smaller droplets in the corner to sufficiently increase the temperature and be able to propagate inside the CRZ, filled with liquid fuel and cold air. If this propagation inside the CRZ is achieved, phase three is accomplished and the burner is fully ignited. The simulations demonstrate the particular importance of detailed chemistry and proper boundary conditions for flame ignition simulations in high-altitude relight conditions.  相似文献   

19.
The objective of this work was to investigate the effect of external radiation angle on radiative ignition of solid materials. A laser ignition experiment was performed in microgravity to investigate events occurring in the ignition process in a quiescent atmosphere. Filter paper was used as the test material, and it was heated by infrared radiation (CO2 laser 10.6 μm) or near-infrared radiation (diode laser, 800.1 nm). The ignition time was determined for various irradiation angles, and the gas phase density change before ignition was observed by a Mach–Zehnder interferometer for each test condition. The results showed that the ignition by CO2 laser occurred on the laser beam line depending on the irradiation angle, while diode laser caused a similar ignition position independent of the irradiation angle. The period from gasification to ignition with CO2 laser was almost the same for different irradiation angles, while it varied with the irradiation angle for diode laser, and the ignition time was much shorter than that with diode laser. According to these results, it is considered that solid ignition with inclined external radiation is characterized based on (1) solid surface heating and (2) gas phase heating, and the second factor, gas phase heating, causes the different dependence of solid ignition on irradiation angle with different radiation wavelengths.  相似文献   

20.
The processes of heat and mass transfer with phase transitions and chemical reactions in the ignition of liquid fuel by a local source of heating, a hot metal particle, under conditions of fuel burnout are studied. The influence of liquid fuel burnout on the ignition characteristics is analyzed, and the results of investigation of the extent of influence of this factor for solid and liquid condensed materials under conditions of local heating are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号