首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The combustion characteristics of styrene-butadiene-styrene (SBS) asphalt are studied by thermogravimetric analysis (TG/DTG) at four different heating rates. According to the saturates/aromatics/resins/asphaltenes (SARA) fractionation method, the combustion process of SBS asphalt can be divided by Gaussian peak fitting into three main stages: oil content release, resin pyrolysis, and asphaltene and char combustion. When the heating rate increases, the mass losses of the oil content and resin pyrolysis increase, and less asphaltenes are formed at a higher temperature. The activation energy values are calculated by the Coats-Redfern method to be in the range 61.6 kJ/mol-142.9 kJ/mol. The Popescu method is used for the kinetic analysis, and the result shows that the three stages of asphalt combustion can be explained by the sphere phase boundary reaction model, the second order chemical reaction model, nucleation, and its subsequent growth model, respectively.  相似文献   

2.
The application of Variable Reaction Coordinate Transition State Theory for an energetic material is presented. The homolysis of the N–N bond in RDX is characterized using an embedding methodology in which key atoms in the bond-dissociation process are computed using CASPT2(10e,7o)/jun-cc-pVTZ, while the rest of the molecule is computed using M06-2X/jun-cc-pVTZ. Microcanonical rate theory is used to quantify the temperature and pressure dependent rate constants. The cleavage of the N–N bond is by far the dominant channel, with HONO elimination a distant second. The predicted rate constants are in excellent agreement with the experimental data. The computational approach can be used to provide accurate models for the combustion properties of novel energetic materials.  相似文献   

3.
Combining polarizing-filtered planar laser-induced fluorescence (PLIF) with simultaneous laser absorption, quantitative laser-induced breakdown spectroscopy (LIBS) and two-color pyrometry, the potassium release during the combustion of biomass fuels (corn straw and poplar) has been investigated. The temporal release profiles of volatile atomic potassium and potassium compounds from a corn straw show a single peak. The woody biomass, poplar, produces a dual-maxima distribution for potassium and potassium compounds. For both biomass samples, the highest concentrations of released atomic potassium and potassium compounds occur in the devolatilization stage. The mass ratios between volatile atomic potassium and potassium compounds in the corn straw and poplar cases are 0.77% and 0.79%, respectively. These values agree well with chemical equilibrium predictions that 0.68% of total potassium will be in atomic form. A two-step kinetic model of potassium release has been developed, which gives better predictions during the devolatilization stage than the existing single-step model. Finally, a map of potassium transformation processes during combustion is developed. Starting with inorganic and organic potassium, there are eight proposed transformation pathways including five proposed release pathways that occur during the combustion. The pathways describe the transformation of potassium between the fuel volatile matter, char, and ash. Potassium release during the devolatilization stage is due to pyrolysis and evaporation; during the char burnout stage, potassium release is due to char oxidation and decomposition; and during the ash cooking stage, potassium release is caused by reactions between the ash and H2O in the co-flow.  相似文献   

4.
Apparent char kinetic rates are commonly used to predict pulverized coal char burning rates. These kinetic rates quantify the char burning rate based on the temperature of the particle and the oxygen concentration at the external particle surface, inherently neglecting the impact of variations in the internal diffusion rate and penetration of oxygen. To investigate the impact of bulk gas diffusivity on these phenomena during Zone II burning conditions, experimental measurements were performed of char particle combustion temperature and burnout for a subbituminous coal burning in an optical entrained flow reactor with helium and nitrogen diluents. The combination of much higher thermal conductivity and mass diffusivity in the helium environments resulted in cooler char combustion temperatures than in equivalent N2 environments. Measured char burnout was similar in the two environments for a given bulk oxygen concentration but was approximately 60% higher in helium environments for a given char combustion temperature. To augment the experimental measurements, detailed particle simulations of the experimental conditions were conducted with the SKIPPY code. These simulations also showed a 60% higher burning rate in the helium environments for a given char particle combustion temperature. To differentiate the effect of enhanced diffusion through the external boundary layer from the effect of enhanced diffusion through the particle, additional SKIPPY simulations were conducted under selected conditions in N2 and He environments for which the temperature and concentrations of reactants (oxygen and steam) were identical on the external char surface. Under these conditions, which yield matching apparent char burning rates, the computed char burning rate for He was 50% larger, demonstrating the potential for significant errors with the apparent kinetics approach. However, for specific application to oxy-fuel combustion in CO2 environments, these results suggest the error to be as low as 3% when applying apparent char burning rates from nitrogen environments.  相似文献   

5.
We examine the combustion of heterogeneous propellants for which, necessarily, the chemical kinetics is modelled using simple global schemes. Choosing the parameters for such schemes is a significant challenge, one that, in the past, has usually been met using hand-fitting of experimental data (target data) for global burning properties such as steady burning rates, burn-rate temperature sensitivity, and the like. This is an unsatisfactory strategy in many ways. It is not optimal; and if the target set is large and includes such things as stability criteria, or bounds, difficult to implement. Here we discuss the use of a general optimization strategy which can handle large data sets of a general nature. The key numerical tool is a genetic algorithm that uses MPI on a parallel platform. We use this strategy to determine parameters for HMX/HTPB propellants and AP/HTPB propellants. Only one-dimensional target data are used, corresponding to the burning of pure HMX (AP) or a homogenized blend of fine HMX (AP) and HTPB. The goal is to generate kinetics models that can be used in the numerical simulation of three-dimensional heterogeneous propellant combustion. The results of such simulations will be reported in a sequel.  相似文献   

6.
Fuel-rich combustion of methane in a homogeneous-charge compression-ignition (HCCI) engine can be used as a polygeneration process producing work, heat, and useful chemicals like syngas. Due to the inertness of methane, additives such as dimethyl ether (DME) are needed to achieve ignition at moderate inlet temperatures and to control combustion phasing. Because significant concentrations of DME are then needed, a considerable part of the fuel energy comes from DME. An alternative ignition promotor known from fuel-lean HCCI is ozone (O3). Here, a combined experimental and modelling study on the ignition of fuel-rich partial oxidation of methane/air mixtures at Φ = 1.9 with ozone and DME as additives in an HCCI engine is conducted. Experimental results show that ozone is a suitable additive for fuel-rich HCCI, with only 75 ppm ozone reducing the fuel-fraction of DME needed from 11.0% to 5.3%. Since ozone does not survive until the end of the compression stroke, the reaction paths are analyzed in a single-zone model. The simulation shows that different ignition precursors or buffer molecules are formed, depending on the additives. If only DME is added, hydrogen peroxide (H2O2) and formaldehyde (CH2O) are the most important intermediates, leading to OH formation and ignition around top dead center (TDC). With ozone addition, methyl hydroperoxide (CH3OOH) becomes very important earlier in the compression stroke under these fuel-rich conditions. It is then later converted to CH2O and H2O2. Thus, ozone is a very effective additive not only for fuel-lean, but also for fuel-rich combustion. However, the mechanism differs between both regimes. Because less of the expensive additives are needed, ozone could help improving the economics of a polygeneration process with fuel-rich operated HCCI engines.  相似文献   

7.
Pinenes and pinene dimers have similar energy densities to petroleum-based fuels and are regarded as alternative fuels. The pyrolysis of the pinenes is well studied, but information on their combustion kinetics is limited. Three stoichiometric, flat premixed flames of the C10H16 monoterpenes α-pinene, β-pinene, and myrcene were investigated by synchrotron-based photoionization molecular-beam mass spectrometry (PI-MBMS) at the Advanced Light Source (ALS). This technique allows isomer-resolved identification and quantification of the flame species formed during the combustion process. Flame-sampling molecular-beam mass spectrometry even enables the detection of very reactive radical species. Myrcene was chosen because of its known formation during β-pinene pyrolysis. The quantitative speciation data and the discussed decomposition steps of the fuels provide important information for the development of future chemical kinetic reaction mechanisms concerning pinene combustion. The main decomposition of myrcene starts with the unimolecular cleavage of the carbon-carbon single bond between the two allylic carbon atoms. Further decompositions by β-scission to stable combustion intermediates such as isoprene (C5H8), 1,2,3-butatriene (C4H4) or allene (aC3H4) are consistent with the observed species pool. Concentrations of all detected hydrocarbons in the β-pinene flame are closer to the myrcene flame than to the α-pinene flame. These similarities and the direct identification of myrcene by its photoionization efficiency spectrum during β-pinene combustion indicate that β-pinene undergoes isomerization to myrcene under the studied flame conditions. Aromatic species such as phenylacetylene (C8H6), styrene (C8H8), xylenes (C8H10), and indene (C9H8) could be clearly identified and have higher concentrations in the α-pinene flame. Consequently, a higher sooting tendency can generally be expected for this monoterpene. The presented quantitative speciation data of flat premixed flames of the three monoterpenes α-pinene, β-pinene, and myrcene give insights into their combustion kinetics.  相似文献   

8.
In this study, a novel model for the analysis and optimisation of numerical and experimental chemical kinetics is developed. Concentration–time profiles of non-diffusive chemical kinetic processes and flame speed profiles of fuel–oxidiser mixtures can be described by certain characteristic points, so that relations between the coordinates of these points and the input parameters of chemical kinetic models become almost linear. This linear transformation model simplifies the analysis of chemical kinetic models, hence creating a robust global sensitivity analysis and allowing quick optimisation and reduction of these models. Firstly, in this study the model is extensively validated by the optimisation of a syngas combustion model with a large data set of imitated ignition experiments. The optimisation with the linear transformation model is quick and accurate, revealing the potential for decreasing the numerical costs of the optimisation process by at least one order of magnitude compared to established methods. Additionally, the optimisation on this data set demonstrates the capability of predicting reaction rate coefficients more accurately than by currently known confidence intervals. In a first application, methane combustion models are optimised with a small experimental set consisting of OH(A) and CH(A) concentration profiles from shock tube ignition experiments, species profiles from flow reactor experiments and laminar flame speeds. With the optimised models, especially the predictability for the flame speeds of mixtures of hydrogen, carbon monoxide and methane can be increased compared to established models. With the analysis of the optimised models, new information on the low pressure reaction coefficient of the fall-off reaction H+CH3(+M)?CH4(+M) is determined. In addition, the optimised combustion model is quickly and efficiently reduced to validate a new rapid reduction scheme for chemical kinetic models.  相似文献   

9.
The stoichiometry and rate of carbon combustion at low temperature (673 K) were investigated. Oxidation and TPD experimental data provide quantification of gaseous products and stable surface complexes over a broad range of conversion. Our analysis distinguishes between surface complexes forming CO and CO2 and has assumed a certain fraction of each complex type decomposes instantaneously upon formation, leaving the remainder on the surface as stable complexes, C(O) and C(O2). This analysis suggests that a maximum of 25% of CO-complexes and 89% of CO2-complexes are unstable upon formation. At low conversion, unstable complex formation is the dominant pathway for the CO product. As conversion increases, decomposition of stable CO-complexes eventually becomes the main source of CO. Formation of unstable CO2-complexes is the dominant pathway for the CO2 product at all times. The combustion rate is initially high due to a high availability of vacant active sites, decreases sharply as these sites are filled with stable complexes, and gradually increases as the stable complexes promote CO2-complex formation, in turn, driving their decomposition. The dynamics of formation and decomposition of C(O) and C(O2) dictates their ratio on the carbon surface at any moment, which may be measured by TPD. This work may help in developing new kinetic models of carbon combustion which can predict the stoichiometry as well as the rate.  相似文献   

10.
11.
A computational fluid dynamics (CFD) tool for performing turbulent combustion simulations that require finite-rate chemistry is developed and tested by modelling a series of bluff-body stabilized flames that exhibit different levels of finite-rate chemistry effects ranging from near equilibrium to near global extinction. The new modelling tool is based on the multi-environment probability density function (MEPDF) methodology and combines the following: the direct quadrature method of moments (DQMOM); the interaction-by-exchange-with-the-mean (IEM) mixing model; and realistic combustion chemistry. Using DQMOM, the MEPDF model can be derived from the transport PDF equation by depicting the joint composition PDF as a weighted summation of a finite number of multi-dimensional Dirac delta functions in the composition space. The MEPDF method with multiple reactive scalars retains the unique property of the joint PDF method of treating chemical reactions exactly. However, unlike the joint PDF methods that typically must resort to particle-based Monte-Carlo solution schemes, the MEPDF equations (i.e. the transport equations of the weighted delta-peaks) can be solved by traditional Eulerian grid-based techniques. In the current study, a pseudo time-splitting scheme is adopted to solve the MEPDF equations; the reaction source terms are computed with a highly efficient and accurate in-situ adaptive tabulation (ISAT) algorithm. A 19-species reduced mechanism based on quasi-steady state assumptions is used in the simulations of the bluff-body flames. The modelling results are compared with the experimental data, including mixing, temperature, major species and important minor species such as CO and NO. Compared with simulations using a Monte-Carlo joint PDF method, the new approach shows comparable accuracy.  相似文献   

12.
A detailed model of steady-state combustion of a pseudo-propellant containing cyclotrimethylene trinitramine (RDX) and triaminoguanidinium azotetrazolate (TAGzT) is presented. The physicochemical processes occurring within the foam layer, comprised of a liquid and gas bubbles, and a gas-phase region above the burning surface are considered. The chemical kinetics is represented by a global thermal decomposition mechanism within the liquid by considering 18 species and eight chemical reactions. The reactions governing decomposition of TAGzT were deduced from separate confined rapid thermolysis experiments using Fourier transform infrared spectroscopy and time-of-flight mass spectrometry. Within the gas bubbles and gas-phase region, a detailed chemical kinetics mechanism was used by considering up to 93 species and 504 reactions. The pseudo-propellant burn rate was found to be highly sensitive to the global decomposition reactions of TAGzT. The predicted results of burn rate agree well with experimental burn-rate data. The increase in burn rate by inclusion of TAGzT is due in part from exothermic decomposition of the azotetrazolate within the foam layer, and from fast gas-phase reactions between triaminoguanidine decomposition products, such as hydrazine, and oxidiser products from the nitramine decomposition.  相似文献   

13.
Due to recent interest in methanol economy, it is seen that a numerical study of combustion of methanol in a comprehensive manner is necessary. Motivated from this interest and based on the studies from literature, a numerical study on prediction of structures of non-premixed methanol-air flames in laminar forced convective environment is reported. Two-dimensional, planar and axisymmetric, computational domains are considered. Corresponding governing equations for conservation of mass, momentum, species and energy have been solved using Ansys FLUENT. The numerical model incorporates multi-component diffusion, variable thermal and physical properties, a short chemical kinetics mechanism with 18 species and 38 elementary reactions, and a non-luminous thermal radiation model. Homogeneous flames in opposed flow and heterogeneous flames in cross-flow and co-flow configurations are studied. For heterogeneous flames, interface conditions at the liquid methanol surface are defined systematically using a user-defined function. Numerical results are validated against the experimental results available in literature. Results in terms of mass burning rates, flow, species and temperature fields have been presented to describe the flame characteristics.  相似文献   

14.
In order to guarantee good re-ignition capacities in case of engine failure during flight, it is of prime interest for engine manufacturers to understand the physics of ignition from the spark discharge to the full burner lightning. During the ignition process, a spark plug delivers a very short and powerful electrical discharge to the mixture. A plasma is first created before a flame kernel propagates. The present work focuses on this still misunderstood first instants of ignition, i.e., from the sparking to the flame kernel formation. 3D Direct Numerical Simulations of propane-air ignition sequences induced by an electric discharge are performed on a simple anode-cathode set-up. An Analytically Reduced Chemistry (ARC) including 34 transported species and 586 irreversible reactions is used to describe the coupled combustion and plasma kinetics. The effect of plasma chemistry on the temperature field is found to be non-negligible up to a few microseconds after the spark due to endothermic dissociation and ionization reactions. However, its impact on the subsequent flame kernel development appears to be weak in the studied configuration. This tends to indicate that plasma chemistry does not play a key role in ignition and may be omitted in numerical simulations.  相似文献   

15.
16.
The structure of ZND waves under simple three step chain-branching kinetics is analyzed, assuming a slow initiation rate but arbitrary chain-branching activation energy. The analysis allows for a complete solution for the ZND wave in all cases, inside or outside the chain-branching explosion region, or close to the explosion limit. Results show that even when the von Neumann point is inside the explosion region, chain-branching effectively stops and the chain-branching radical concentration reaches a small near-steady value before all the reactant is consumed. Beyond that point, chemistry proceeds slowly, at a rate of the order of the initiation rate. For a von Neumann point relatively close to the limit, the reactant concentration is still quite significant when chain-branching stops, but diminishes for von Neumann points deeper inside the explosion region. The assumption that initiation is much slower than chain-branching is often quite accurate, in which case the length required for complete burn is orders of magnitude longer than the chain-branching length, so that as a practical matter, combustion never completes. In contrast, numerical simulation shows that under the same conditions, the cellular wave results in a more complete burn.  相似文献   

17.
A framework for automated development of reduced mechanisms is presented by combining the methodologies of level of importance (LOI) and rate-controlled constrained equilibrium (RCCE). It is shown that these methods are complimentary, as they deal with different aspects of the overall reduction problem: LOI is a method of determining the species governed by fast/slow scales, while RCCE is a physical model that yields ODEs that describe the reduced model for a given selection. The potential for the synergy of the two methods is demonstrated by reducing a comprehensive mechanism for propane combustion (117 species, 665 reactions) and applying the reduced mechanism to the problem of 1-D laminar flame propagation. Results show that RCCE yields substantial CPU gainings, while predicting the major species as well as important minor species (such as radicals and C2H2) with sufficient accuracy.  相似文献   

18.
超音速等离子体点火过程的三维数值模拟   总被引:6,自引:0,他引:6       下载免费PDF全文
为了研究等离子体点燃超音速混合气流的过程,设计并验证了超音速燃烧室的三维计算模型,计算出了燃烧室等离子体点火时的流场参数和化学反应规律,分析了等离子体点火对燃烧室内燃烧的影响。计算结果表明:高温等离子体射流的滞止作用通过增加混合气在燃烧室内的停留时间提高了点火效率; 等离子体点火时燃烧区域的压力扩散比较充分,内部为压力相对平衡的低速流动; 高温等离子体射流高速射向混合气流时产生的速度矢量偏移扩大了点火面积,从而使点火效率得到提高; 氢气、空气燃烧的燃烧产物主要是水,燃烧区域局部温度主要受局部放热反应的影响。  相似文献   

19.
A reduced-order model was developed to calculate the redox kinetics of oxygen carrier in chemical looping combustion. The reduced-order model can describe the major physical/chemical features of the redox steps of oxygen carrier, such as gas diffusion around and inside the particle, surface reaction, product growth, product layer diffusion, pore structure change etc. It is an analytical model simplified using the Thiele modulus method and thus is much easier for computational fluid dynamics modeling and reactor design. The accuracy of variations of redox conversion under different temperatures and gas concentrations predicted by the reduced-order model is verified by comparison with both the detailed one-dimensional model and the experimental data. The results indicate that the reduced-order model can reproduce the prediction accuracy of the detailed one-dimensional model and agrees well with the experimental data. The well observed two-stage behavior of a fast initial stage followed by a second slower stage was discussed in detail. Further, the reduced-order model was used to analyze the effect of particle structural parameters on the kinetics. The relative importance of each controlling step in the kinetics of oxygen carrier predicted by the reduced-order model was compared.  相似文献   

20.
The present work assesses the impact - in terms of time to solution, throughput analysis, and hardware scalability - of transferring computationally intensive tasks, found in compressible reacting flow solvers, to the GPU. Attention is focused on outlining the workflow and data transfer penalties associated with “plugging in” a recently developed GPU-based chemistry library into (a) a purely CPU-based solver and (b) a GPU-based solver, where, except for the chemistry, all other variables are computed on the GPU. This comparison allows quantification of host-to-device (and vice versa) data transfer penalties on the overall solver speedup as a function of mesh and reaction mechanism size. To this end, a recently developed GPU-based chemistry library known as UMChemGPU is employed to treat the kinetics in the flow solver KARFS. UMChemGPU replaces conventional CPU-based Cantera routines using a matrix-based formulation. The impact of i) data transfer times, ii) chemistry acceleration, and iii) the hardware architecture is studied in detail in the context of GPU saturation limits. Hydrogen and dimethyl ether (DME) reaction mechanisms are used to assess the impact of the number of species/reactions on overall/chemistry-only speedup. It was found that offloading the source term computation to UMChemGPU results in up to 7X reduction in overall time to solution and four orders of magnitude faster source term computation compared to conventional CPU-based methods. Furthermore, the metrics for achieving maximum performance gain using GPU chemistry with an MPI + CUDA solver are explained using the Roofline model. Integrating the UMChemGPU with an MPI + OpenMP solver does not improve the overall performance due to the associated data copy time between the device (GPU) and host (CPU) memory spaces. The performance portability was demonstrated using three different GPU architectures, and the findings are expected to translate to a wide variety of high-performance codes in the combustion community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号