首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibitory effect of Cd(II), Ni(II), and Zn(II) on the oxidation of 3,3′,5,5′ -tetramethylbenzidine with periodate was detected. The optimum reaction conditions were found, and the procedures were developed for determining 1 × 10−2 to 10 μg/mL Cd(II), Ni(II), and Zn(II) in solution. The indicator reaction was performed on a number of supports. The maximum inhibitory effect was observed on silica gel-based plates for TLC. Procedures for determining 6 × 10−3 to 0.4 μg of these metals were developed. Silica gel plates with the immobilized reagent for cadmium (bromobenzothiazo) were used to preconcentrate cadmium. A selective test procedure was developed for determining 1 × 10−4 −3 × 10−3 μg/mL cadmium with the visual detection of the process rate. Upon the introduction of dimethylglyoxime into the indicator reaction, the inhibitory effect of nickel changed to its promoting effect and the detection limit for nickel was lowered. A procedure was developed for determining 3 × 10−4 −3 × 10−3 μg/mL nickel in solution and 7 × 10−3−4 × 10−1 μg nickel on the surface of Sorbfil plates. An assumption was made about the reasons for the inhibitory effect of metal ions on the oxidation of aryl diamines with periodate.__________Translated from Zhurnal Analiticheskoi Khimii, Vol. 60, No. 6, 2005, pp. 662–669.Original Russian Text Copyright © 2005 by Beklemishev, Kiryushchenkov, Stoyan, Dolmanova.  相似文献   

2.
Silica gel chemically bonded with aminothioamidoanthraquinone was synthesized and characterized. The metal sorption properties of modified silica were studied towards Pb(II), Cu(II), Ni(II), Co(II) and Cd(II). The determination of metal ions was carried out on FAAS. For batch method, the optimum pH ranges for Pb(II), Cu(II) and Cd(II) extraction were ≥3 but for Ni(II) and Co(II) extraction were ≥4. The contact times to reach the equilibrium were less than 10 min. The adsorption isotherm fitted the Langmuir's model showed the maximum sorption capacities of 0.56, 0.30, 0.15, 0.12 and 0.067 mmol/g for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively. In the flow system, a column packed modified silica at 20 mg for Pb(II) and Cu(II), 50 mg for Cd(II), 60 mg for Co(II), Ni(II) was studied at a flow rate of 4 and 2.5 mL/min for Ni(II). The sorbed metals were quantitatively eluted by 1% HNO3. No interference from Na+, K+, Mg2+, Ca2+, Cl and SO42− at 10, 100 and 1000 mg/L was observed. The application of this modified silica gel to preconcentration of pond water, tap water and drinking water gave high accuracy and precision (%R.S.D. ≤ 9). The method detection limits were 22.5, 1.0, 2.9, 0.95, 1.1 μg/L for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively.  相似文献   

3.
Summary The cation-exchange behaviour of Mg(II), Ca(II), Sr(II), Ba(II), Mn(II), Cd(II), Co(II), Ni(II), Zn(II), Cu(II) and Fe(III) in succinate media at various concentrations and pH, was studied with Dowex 50 WX8 resin (200–400 mesh) in the NH 4 + form. As examples separations of Cd(II)/Co(II), Cd (II)/Ni(II), Fe(III)/Cu(II)/Ni(II) and Mg(II)/Ca(II)/Sr(II)/Ba(II) have been achieved.This work was supported by C.N.R. of Italy.  相似文献   

4.
Kilian K  Pyrzyńska K 《Talanta》2003,60(4):669-678
The reaction of 5,10,15,20-tetrakis(4-carboxylphenyl)porphyrin (TCPP) with Cd(II), Pb(II), Hg(II) and Zn(II) was studied spectrophotometrically and kinetics, equilibrium constants as well as photodecomposition of complexes were determined. It was verified that these metal ions with large radius accelerate the incorporation reaction of zinc into TCPP. On the basis of the mechanism and kinetics of this reaction, a sensitive method for the spectrophotometric determination of trace amounts of Zn(II) has been developed. The molar absorptivity of examined Zn-TCPP complex and Sandell's sensitivity at 423 nm were 3.5×105 M−1 cm−1 and 18.3 ng cm−2. The detection limit for the recommended procedure was 1.4×10−9 M (0.9 ng ml−1) and precision in range 20-100 ng ml−1 not exceeds 2.7% RSD. The proposed method applied for zinc determination in natural waters and nutritional supplement was compared with AAS results and declared value.  相似文献   

5.
Solid-phase extraction (SPE) method for preconcentration and determination of Cd(II), Pb(II), Co(II), Ni(II), and Cu(II) aqueous samples by inductively coupled plasma optical emission spectrometry is described. The preconcentration of analytes is accomplished by retention of their chelates with 1.10-phenanthroline in aqueous solution on a solid phase containing carboxylic acid (COOH) bonded to silica gel in a column. The limits of detection values (defined as “3s” where “s” is standard deviation of the blank determination) are 3.6 μg/L for Cd(II), 17.5 μg/L for Pb(II), 3.1 μg/L for Co(II), 2.1 μg/L for Ni(II), and 4.4 μg/L for Cu(II) and corresponding limit of quantification (6s) values are 7.2, 35, 6.2, 4.2 and 8.8 μg/L, respectively. As a result, a simple method was elaborated for the group concentration and determination of the above mentioned metals in reference material and in samples of plant material. The article is published in the original.  相似文献   

6.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)3,3-dimethylglutarates were investigated and their quantitative composition, solubility in water at 293 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with general formula MC7H10O4nH2O (n=0−2) were recorded and their thermal decomposition in air were studied. During heating the hydrated complexes of Mn(II),Co(II), Ni(II) and Cu(II) are dehydrated in one step and next all the anhydrous complexes decompose to oxides directly (Mn, Co, Zn) or with intermediate formation free metal (Ni,Cu) or oxocarbonates (Cd). The carboxylate groups in the complexes studied are bidentate. The magnetic moments for the paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II)attain values 5.62, 5.25, 2.91 and 1.41 M.B., respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The isatin-β-thiosemicarbazone (ITC) complexes of Co(II), Ni(II), Cu(II), Zn(II), Hg(II) and Pd(II) were prepared and characterized by elemental analysis, as well as molar conductivity, magnetic susceptibility, FTIR, UV-Vis and 1H NMR spectroscopic methods. The complexes were also studied for its thermal stability. They all behaviour as anhydrous complexes and its thermolysis passes through the stages of deamination (517–547 K) and complete thermal decomposition (619–735 K).  相似文献   

8.
Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 3-methylglutarates were prepared as solids with general formula MC6 H8 O4 ×n H2 O, where n =0–8. Their solubilities in water at 293 K were determined (7.0×10−2 −4.2×10−3 mol dm−3 ). The IR spectra were recorded and thermal decomposition in air was investigated. The IR spectra suggest that the carboxylate groups are mono- or bidentate. During heating the hydrated complexes lose some water molecules in one (Mn, Co, Ni, Cu) or two steps (Cd) and then mono- (Cu) or dihydrates (Mn, Co, Ni) decompose to oxides directly (Mn, Cu, Co) or with intermediate formation of free metals (Co, Ni). Anhydrous Zn(II) complex decomposes directly to the oxide ZnO. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Methanobactin (Mb) from Methylosinus trichosporium OB3b is a member of a class of metal binding peptides identified in methanotrophic bacteria. Mb will selectively bind and reduce Cu(II) to Cu(I), and is thought to mediate the acquisition of the copper cofactor for the enzyme methane monooxygenase. These copper chelating properties of Mb make it potentially useful as a chelating agent for treatment of diseases where copper plays a role including Wilson’s disease, cancers, and neurodegenerative diseases. Utilizing traveling wave ion mobility-mass spectrometry (TWIMS), the competition for the Mb copper binding site from Ag(I), Pb(II), Co(II), Fe(II), Mn(II), Ni(II), and Zn(II) has been determined by a series of metal ion titrations, pH titrations, and metal ion displacement titrations. The TWIMS analyses allowed for the explicit identification and quantification of all the individual Mb species present during the titrations and measured their collision cross-sections and collision-induced dissociation patterns. The results showed Ag(I) and Ni(II) could irreversibly bind to Mb and not be effectively displaced by Cu(I), whereas Ag(I) could also partially displace Cu(I) from the Mb complex. At pH ≈ 6.5, the Mb binding selectivity follows the order Ag(I)≈Cu(I)>Ni(II)≈Zn(II)>Co(II)>>Mn(II)≈Pb(II)>Fe(II), and at pH 7.5 to 10.4 the order is Ag(I)>Cu(I)>Ni(II)>Co(II)>Zn(II)>Mn(II)≈Pb(II)>Fe(II). Breakdown curves of the disulfide reduced Cu(I) and Ag(I) complexes showed a correlation existed between their relative stability and their compact folded structure indicated by their CCS. Fluorescence spectroscopy, which allowed the determination of the binding constant, compared well with the TWIMS analyses, with the exception of the Ni(II) complex.
Graphical abstract ?
  相似文献   

10.
Candir S  Narin I  Soylak M 《Talanta》2008,77(1):289-293
A cloud point extraction (CPE) procedure has been developed for the determination trace amounts of Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II) ions by using flame atomic absorption spectrometry. The proposed cloud point extraction method was based on cloud point extraction of analyte metal ions without ligand using Tween 80 as surfactant. The surfactant-rich phase was dissolved with 1.0 mL 1.0 mol L−1 HNO3 in methanol to decrease the viscosity. The analytical parameters were investigated such as pH, surfactant concentration, incubation temperature, and sample volume, etc. Accuracy of method was checked analysis by reference material and spiked samples. Developed method was applied to several matrices such as water, food and pharmaceutical samples. The detection limits of proposed method were calculated 2.8, 7.2, 0.4, 1.1, 0.8 and 1.7 μg L−1 for Cr(III), Pb(II), Cu(II), Ni(II), Bi(III), and Cd(II), respectively.  相似文献   

11.
Summary The cation-exchange behaviour of Mn(II), Cd(II), Co(II), Ni(II), Zn(II), Cu(II), Fe(III), Sc(III), Y(III), Eu(III), Dy(III), Ho(III), Yb(III), Ti(IV) and Nb(V) in malate media at various concentrations and pH, was studied with Dowex 50 WX8 resin (200–400 mesh) in the ammonium form. Separation of Fe(III)/Cu(II), Fe(III)/Cu(II)/Zn(II), Fe(III)/Co(II)/Mn(II), Cu(II)/Ni(II)/Mn(II), Fe(III)/Cu(II)/Co(II)/Mn(II), Fe(III)/Cu(II)/Ni(II)/Cd(II), Yb(III)/Eu(III), Sc(III)/Y(III),Sc(III)/Yb(III)/Dy(III) and Nb(V)/Yb(III)/Ho(III) has been achieved, among others.This work was supported by C.N.R. of Italy.  相似文献   

12.
Summary Synthesis of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide, and its coordination compounds with nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) are described. The ligand and the complexes have been characterized on the basis of analytical, conductance, molecular weight, i.r., electronic and n.m.r. spectra and magnetic susceptibility measurements. The stoichiometries of the complexes are represented as NiL · 3H2O, CoL · 2H2O, CuL, MnL · 2H2O, ZnL · H2O, Zr(OH)2(LH)2, Zr(OH)2L · 2MeOH, UO2L · MeOH and MoO2L · MeOH (where LH2 = Schiff base). The copper(II) complex shows a subnormal magnetic moment due to antiferromagnetic exchange interaction while the nickel(II), cobalt(II) and manganese (II) complexes show normal magnetic moments at room temperature. The i.r. and n.m.r. spectral studies show that the Schiff base behaves as a dibasic and tridentate ligand coordinating through the deprotonated phenolic.oxygen, enolic oxygen and azomethine nitrogen.  相似文献   

13.
Thermodynamic data on interaction of Cu(II), Ni(II), and Co(II) with silica modified with ethyleneimine are obtained by calorimetric titration. The amount of ethyleneimine anchored on silica surface was estimated to be 0.70 mmol g−1. The enthalpies of binding Ni(II), Cu(II) and Co(II), are −3.59 ± 0.001, −4.88 ± 0.001, and −7.75 ± 0.003 kJ mol−1, respectively.  相似文献   

14.
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2·nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)2·4H2O, 3.96–4.75 μB for Co(C8H6ClO3)2·5H2O, 2.32–3.02 μB for Ni(C8H6ClO3)2·5H2O and 1.77–1.94 μB for Cu(C8H6ClO3)2·4H2O.  相似文献   

15.
Four new complexes of 2,3,4-trimethoxybenzoic acid anion with manganese(II), cobalt(II), nickel(II) and copper(II) cations were synthesized, analysed and characterized by standard chemical and physical methods. 2,3,4-Trimethoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) are polycrystalline compounds with colours typical for M(II) ions. The carboxylate group in the anhydrous complexes of Mn(II), Co(II) and Ni(II) is monodentate and in that of Cu(II) monohydrate is bidentate bridging one. The anhydrous complexes of Mn(II), Co(II) and Ni(II) heated in air to 1273 K are stable up to 505–517 K. Next in the range of 505–1205 K they decompose to the following oxides: Mn3O4, CoO, NiO. The complex of Cu(II) is stable up to 390 K, and next in the range of 390–443 K it loses one molecule of water. The final product of its decomposition is CuO. The solubility in water at 293 K is of the order of 10–3 mol dm–3 for the Mn(II) complex and 10–4 mol dm–3 for Co(II), Ni(II) and Cu(II) complexes. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in 2,3,4-trimethoxybenzoates experimentally determined in the range of 77–300 K change from 5.64–6.57 μB (for Mn2+), 4.73–5.17 μB (for Co2+), 3.26–3.35 μB (for Ni2+) and 0.27–1.42 μB (for Cu2+). 2,3,4-Trimethoxybenzoates of Mn(II), Co(II) and Ni(II) follow the Curie–Weiss law, whereas that of Cu(II) forms a dimer.  相似文献   

16.
The hippurates of Co(II), Ni(II), Cu(II) and Zn(II) were isolated from the solution, their quantitative composition and the way of coordination of metal — ligand were determined and the conditions and products of thermal decomposition during heating in air atmosphere up to 1273 K were studied. The complexes of Ni(II), Cu(II) and Zn(II) heated lose some water molecules and then decompose to MO. The hippurate of Co(II) heated loses some water molecules and then decomposes to CoO with intermediate formation Co3O4.
Zusammenfassung Aus Lösung wurden die Co(II)-, Ni(II)-, Cu(II)- und Zn(II)-Salze der Hippursäure gewonnen, ihre quantitative Zusammensetzung sowie die Art der Koordination der Metall-Ligandenbindung bestimmt. Weiterhin wurden die Bedingungen und Produkte der thermischen Zersetzung beim Erhitzen in einer Luftatmosphäre bis 1273 K untersucht. Die Komplexe von Ni(II), Cu(II) und Zn(II) verlieren beim Erhitzen ein paar Moleküle Wasser und zersetzen sich anschlieend zu MO. Co(II)-hippurat gibt beim Erhitzen einige Moleküle Wasser ab und zersetzt sich dann über die Zwischenstufe Co3O4 zu CoO.
  相似文献   

17.
N-(Thio)phosphorylated (thio)carbamides and (thi o)amides are proposed as modifiers of polymer nitrocellulose membranes for the adsorption preconcentration of Ni(II), Zn(II), and Cd(II) from aqueous solutions. The binding constants of metalions with the immobilized reagents are 1.5–2.5 times higher than those with monomer ligands in solution. The preconcentration coefficients are 1950–3500. Aprocedure was developed for the adsorption preconcentration and recovery of Ni(II), Zn(II), and Cd(II) as complex compounds, using nitrocellulose membranes modified with N-(thio)phosphorylated thiocarbamides and thioamides.  相似文献   

18.
The complexes Mn(II), Co(II), Ni(II) and Zn(II) with 4-oxo-4H-1-benzopyran-3-carboxaldehyde were synthesized and characterized by elemental analysis, infrared and UV spectroscopy, X-ray diffraction patterns, magnetic susceptibility, thermal gravimetric analysis, conductivity and also solubility measurements in water, methanol and DMF solution at 298 K. They are polycrystalline compounds with various formula and different ratio of metal ion:ligand. Their formula are following: [MnL2(H2O)](NO3)2·2H2O, [CoL2](NO3)2·3H2O, [NiL2](NO3)2·3H2O, [CuL2](NO3)2·H2O and [ZnL3](NO3)2, where L = C10H6O3. The coordination of metal ions is through oxygen atoms present in 4-position of γ-pyrone ring and of aldehyde group of ligand. Chelates of Mn(II), Co(II), Ni(II) and Cu(II) obey Curie–Weiss law and they are high-spin complexes with the weak ligand fields. The thermal stability of analyzed complexes was studied in air at 293–1,173 K. On the basis of the thermoanalytical curves, it appears that thermal stability of anhydrous analysed chelates changed following: Cu (423 K) < Zn (438 K) ~ Co (440 K) < Ni (468 K). The gaseous products of thermal decomposition of those compounds in air atmosphere are following: CO2, CO, NO2, N2O, hydrocarbons and in case of hydrates also water. The molar conductance data confirm that the all studied complexes are 1:2 electrolytes in DMF solution.  相似文献   

19.
Summary The syntheses of several new coordination complexes of nickel(II), cobalt(II), manganese(II), copper(II), zinc(II), dioxouranium(VI) and dioxomolybdenum(VI) with new Schiff bases derived from 2-benzothiazolecarbohydrazide and salicylaldehyde or 2-hydroxy-1-naphthaldehyde are described. These complexes have been characterised by elemental analyses, electrical conductance, magnetic susceptibility, molecular weight, i.r. and electronic spectra. The Schiff bases behave as dibasic and tridentate ligands coordinating through the ONO donor system and form complexes of the types NiL · 3H2O, MnL · 2H2O, CoL · 2H2O, CuL, ZnL · H2O, UO2L · MeOH and MoO2L · MeOH (where LH2 = Schiff base). The copper(II) complexes exhibit subnormal magnetic moments indicating the presence of an antiferromagnetic exchange interaction, whereas the nickel(II), cobalt(II) and manganese(II) complexes behave normally at room temperature. Zinc(II), dioxouranium(VI) and dioxomolybdenum(VI) complexes are diamagnetic; the zinc (II) complexes are tetrahedral, the copper(II) complexes are square planar, all the other complexes are octahedral. Thev(C=N),v(C-O),v(N-N) andv(C-S) shifts have been measured in order to locate the Schiff base coordination sites.  相似文献   

20.
Summary The composition and stability of the following biogenic amine complexes have been investigated: 1,4-diaminobutane(Put), 4-azaoctane-1,8-diamine(Spd), 4,9-diazadodecan-1, 12-diamine(Spm) as well as homologues such as 1,3-diaminopropane(Put3), 4-azaheptane-1, 7-diamine(Spd3,3) and 4,8-diazaundecan-1,11-diamine(Spm3,3,3) with H+, Cu(II), Zn(II), Pb(II) and Mg(II). A potentiometric method was used. The VIS technique enabled the determination of coordination mode in copper/amine systems. It was found that Mg(II) does not form coordination compounds with any of the studied polyamines in solution. An increase in the concentration of ligand and metal was found to result in a stronger tendency towards the formation of protonated compounds accompanied by a decrease in the concentration of hydroxocomplexes. At physiologicalpH (7.4) an increase in the concentration of protonated compounds by approximately 15% was observed within the ligand concentration range from 0.001 mol dm–3 to 0.0001 mol dm–3 at a Cu(II) concentration of 0.000177 mol dm–3.
Untersuchungen zur Komplexbildung von Polyaminen mit H+, Cu(II), Zn(II), Pb(II) und Mg(II) in wäßriger Lösung
Zusammenfassung Anhand einer Analyse von potentiometrischen Daten wurden Zusammensetzung und Beständigkeit folgender biogener Aminkomplexe untersucht: 1,4-Diaminobutan(Put), 4-Azaoktan-1,8-diamin(Spd), 4,9-Diazadodekan-1,12-diamin(Spm), sowie auch deren Homologen 1,3-Diaminopropan(Put3), 4-Azaheptan-1,7-diamin(Spd3,3) und 4,8-Diazaundekan-1,11-diamin(Spm3,3,3) mit H+, Cu(II), Zn(II), Pb(II) und Mg(II). Mit Hilfe der VIS-Technik wurde die Koordinationsweise in Kupfer/Amin-Systemen bestimmt. Es wurde festgestellt, daß Mg(II) keine Koordinationsverbindungen mit den untersuchten Polyaminen bildet. Eine höhere Konzentration von Ligand und Metall führte zu stärkerer Tendenz der Bildung protonierter Verbindungen, wobei die Konzentration von Hydroxokomplexen kleiner wurde. Bei physiologischempH (7.4) wurde im Bereich der Ligand-Konzentration von 0.001 mol dm–3 bis 0.0001 mol dm–3 bei einer Cu(II)-Konzentration von 0.000177 mol dm–3 ein Anstieg der Konzentration protonierter Verbindungen um etwa 15% beobachtet.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号