首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excited state mixed valence (ESMV) occurs in molecules in which the ground state has a symmetrical charge distribution but the excited state possesses two or more interchangeably equivalent sites that have different formal oxidation states. Although mixed valence excited states are relatively common in both organic and inorganic molecules, their properties have only recently been explored, primarily because their spectroscopic features are usually overlapped or obscured by other transitions in the molecule. The mixed valence excited state absorption bands of 2,3-di-p-anisyl-2,3-diazabicyclo[2.2.2]octane radical cation are well-separated from others in the absorption spectrum and are particularly well-suited for detailed analysis using the ESMV model. Excited state coupling splits the absorption band into two components. The lower energy component is broader and more intense than the higher energy component. The absorption bandwidths are caused by progressions in totally symmetric modes, and the difference in bandwidths is caused by the coordinate dependence of the excited state coupling. The Raman intensities obtained in resonance with the high and low energy components differ significantly from those expected based on the oscillator strengths of the bands. This unexpected observation is a result of the excited state coupling and is explained by both the averaging of the transition dipole moment orientation over all angles for the two types of spectroscopies and the coordinate-dependent coupling. The absorption spectrum is fit using a coupled two-state model in which both symmetric and asymmetric coordinates are included. The physical meaning of the observed resonance Raman intensity trends is discussed along with the origin of the coordinate-dependent coupling. The well-separated mixed valence excited state spectroscopic components enable detailed electronic and resonance Raman data to be obtained from which the model can be more fully developed and tested.  相似文献   

2.
A model for the quantitative treatment of molecular systems possessing mixed valence excited states is introduced and used to explain observed spectroscopic consequences. The specific example studied in this paper is 1,4-bis(2-tert-butyl-2,3-diazabicyclo[2.2.2]oct-3-yl)-2,3,5,6-tetramethylbenzene-1,4-diyl dication. The lowest energy excited state of this molecule arises from a transition from the ground state where one positive charge is associated with each of the hydrazine units, to an excited state where both charges are associated with one of the hydrazine units, that is, a Hy-to-Hy charge transfer. The resulting excited state is a Class II mixed valence molecule. The electronic emission and absorption spectra, and resonance Raman spectra, of this molecule are reported. The lowest energy absorption band is asymmetric with a weak low-energy shoulder and an intense higher energy peak. Emission is observed at low temperature. The details of the absorption and emission spectra are calculated for the coupled surfaces by using the time-dependent theory of spectroscopy. The calculations are carried out in the diabatic basis, but the nuclear kinetic energy is explicitly included and the calculations are exact quantum calculations of the model Hamiltonian. Because the transition involves the transfer of an electron from the hydrazine on one side of the molecule to the hydrazine on the other side and vice versa, the two transitions are antiparallel and the transition dipole moments have opposite signs. Upon transformation to the adiabatic basis, the dipole moment for the transition to the highest energy adiabatic surface is nonzero, but that for the transition to the lowest surface changes sign at the origin. The energy separation between the two components of the absorption spectrum is twice the coupling between the diabatic basis states. The bandwidths of the electronic spectra are caused by progressions in totally symmetric modes as well as progressions in the modes along the coupled coordinate. The totally symmetric modes are modeled as displaced harmonic oscillators; the frequencies and displacements are determined from resonance Raman spectra. The absorption, emission, and Raman spectra are fit simultaneously with one parameter set. The coupling in the excited electronic state H(ab)(ex) is 2000 cm(-1). Excited-state mixed valence is expected to be an important contributor to the electronic spectra of many organic and inorganic compounds. The energy separations and relative intensities enable the excited-state properties to be calculated as shown in this paper, and the spectra provide new information for probing and understanding coupling in mixed valence systems.  相似文献   

3.
Excited-state mixed valence (ESMV) occurs in the 1,2-diphenyl-1,2-diisopropyl hydrazine radical cation, a molecule in which the ground state has a symmetrical charge distribution localized primarily on the hydrazine, but the phenyl to hydrazine charge-transfer excited state has two interchangeably equivalent phenyl groups that have different formal oxidation states. Electronic absorption and resonance Raman spectra are presented. The neighboring orbital model is employed to interpret the absorption spectrum and coupling. Resonance Raman spectroscopy is used to determine the excited-state distortions. The frequencies of the enhanced modes from the resonance Raman spectra are used together with the time-dependent theory of spectroscopy to fit the two observed absorption bands that have resolved vibronic structure. The origins of the vibronic structure and relationships with the neighboring orbital model are discussed.  相似文献   

4.
Resonance Raman and absorption spectra of 9,10-bis(2-tert-butyl-2,3-diazabicyclo[2.2.2]oct-3-yl)-anthracene (2) are measured and analyzed. The contribution of the individual vibrational normal modes to the reorganization energy is investigated. Excited-state mixed valence in this system is analyzed using density functional theory electronic structure calculations. The resonance Raman excitation profiles exhibit a resonance de-enhancement effect around 20 725 cm-1, but a corresponding feature is not observed in the absorption spectrum. This unusual observation is attributed to the presence of a dipole-forbidden, vibronically allowed component of the split mixed valence excited state. The de-enhancement dip is calculated quantitatively and explained in terms of the real and imaginary components of the polarizabilities of the two overlapping excited states.  相似文献   

5.
Intramolecular charge transfer (ICT) behavior of trans-ethyl p-(dimethylamino)cinamate (EDAC) in various solvents has been studied by steady-state absorption and emission, picosecond time-resolved fluorescence spectroscopy and femtosecond transient absorption experiments as well as time-dependent density functional theory (TDDFT). Large fluorescence spectral shift in more polar solvents indicates an efficient charge transfer from the donor site to the acceptor moiety in the excited state compared to the ground state. The energy for 0,0 transition (ν0,0) for EDAC shows very good linear correlation with static solvent dielectric property. The relaxation dynamics of EDAC in the excited state can be effectively described by a “three state” model where, the locally excited (LE) state converts into the ICT state within 350 ± 100 fs. A combination of solvent reorganization and intramolecular vibrational relaxation within 0.5–6 ps populates the relaxed ICT state which undergoes fluorescence decay within few tens to hundreds of picoseconds.  相似文献   

6.
A donor–acceptor‐type fluorophore containing a twisted diphenylacrylonitrile and triphenylamine has been developed by using the Suzuki reaction. The system indicates typical intramolecular charge‐transfer properties. Upon mechanical grinding or hydrostatic pressure, the fluorophore reveals a multicolored fluorescence switching. Interestingly, a fluorescence color transition from green to red was clearly observed, and the change of photoluminescent (PL) wavelength gets close to 111 nm. The mechanisms of high‐contrast mechanochromic behavior are fully investigated by techniques including powder XRD, PL lifetime, high‐pressure PL lifetime, and Raman spectra analysis. The tremendous PL wavelength shift is attributed to gradual transition of excited states from the local excited state to the charge‐transfer state.  相似文献   

7.
A method in time domain is proposed to investigate resonance Raman spectra of absorbed molecules on semiconductor surfaces. The charge transfer at the molecule-surface interface is incorporated with the use of an Anderson-Newns type Hamiltonian, where the surface continuum state is dealt with an expansion of Legendre polynomials for fast numerical convergence. From a model test, it is found that the intensities of Raman modes in the sole molecule generally decrease as the molecule-surface interaction is switched on, except that the energy gaps between the molecular excited state and the bottom of the band are at special values. New Raman peaks which are not observed in the sole molecule, however, appear and are greatly enhanced. The enhancement depends on the electronic coupling and the energy gap. It is also highly sensitive to the mode-specific reorganization energy in the charge transfer state, and a thousand times enhancement can be obtained at a certain reorganization energy. The corresponding electron dynamics is revealed by the population decay from the absorbed molecule.  相似文献   

8.
Abstract— The excited state behavior of the red light-absorbing form of phytochrome (Pr) was studied on the femtosecond time scale. After excitation of Pr with 75 fs laser pulses at 616 nm the kinetics of the transient absorption changes was recorded at selected wavelengths probing mainly the bleaching of the Pr ground-state absorption and the stimulated emission. The kinetic data obtained indicate the population of an excited state with a 3 ps lifetime immediately after excitation. This state precedes the formation of another excited state with a 32 ps lifetime. The decay of the latter state is followed by the appearance of a first product state that is assumed to represent lunii-R. In addition, 2,3-dihydrobiliverdin, which is considered to be an adequate model of the Pr chro-mophore, was included in the femtosecond studies. The absorption difference spectra recorded at various delay times show an immediate bleaching of the ground-state absorption. Simultaneously with bleaching a broad transient absorption appears between 410 and 525 nm. The data analysis yields similar kinetic components as they were observed in the decay of Pr. It is suggested from this finding that within the first tens of picoseconds after excitation the excited-state properties of Pr are mainly determined by the properties of the chromophore itself.  相似文献   

9.
The nature of the lowest energy optical transition for the complexes (η(6)-naphthalene)Cr(CO)(3) and (η(6)-phenanthrene)Cr(CO)(3) in the solid state has been investigated by Raman spectroscopy using a range of different excitation wavelengths progressively approaching the resonant condition. Examination of the resonantly enhanced Raman modes confirms that the first absorption is attributed predominantly to a metal-to-arene charge transfer transition for both complexes. A notable difference in the photochemistry of the two complexes was observed. In the case of the phenanthrene complex, population of the lowest energy excited state leads to a photochemical process which resulted in the loss of the arene ligand and formation of Cr(CO)(6).  相似文献   

10.
采用共振拉曼光谱技术和密度泛函理论方法研究了6-N,N-二甲基腺嘌呤(DMA)的A带和B带电子激发和Franck-Condon 区域结构动力学. πH→πL*跃迁是A带吸收的主体, 其振子强度约占整个A带吸收的79%.由弥散轨道参与的n→Ryd 和πH→Ryd 跃迁在B带跃迁中扮演重要角色, 其振子强度约占B带吸收的62%,而在A带吸收中占主导的πH→πL*跃迁的振子强度在B带吸收中仅占33%. 嘌呤环变形伸缩+C8H/N9H面内弯曲振动ν23和五元环变形伸缩+C8H弯曲振动ν13的基频、泛频和合频占据了A带共振拉曼光谱强度的绝大部分, 说明1πHπL*激发态结构动力学主要沿嘌呤环的变形伸缩振动, N9H/C8H/C2H弯曲振动等反应坐标展开, 而ν10, ν29, ν21, ν26和ν40的基频、泛频和合频占据了B带共振拉曼光谱强度的主体部分, 它们决定了B带激发态的结构动力学. A带共振拉曼光谱中ν26和ν12被认为与1nπ*/1ππ*势能面锥型交叉有关. B带共振拉曼光谱中ν21的激活与1ππ*/1πσN9H*势能面锥型交叉相关.  相似文献   

11.
采用从头算方法,讨论了9,10-二氰基蒽(DCA)和杜烯(DUR)间光诱导电子转移反应的态-态跃迁.考虑基组重叠误差(BSSE)对相互作用能的校正,用MP2方法优化得到重叠式[DCA…DUR]配合物的稳定构型.用单激发组态相互作用(CIS)方法讨论了[DCA…DUR]配合物的光诱导电荷分离和电荷复合过程.根据广义Mulliken-Hush(GMH)模型,计算了电荷复合过程的电子耦合矩阵元.结果表明,[DCA…DUR]配合物的S0→S1和S0→S2跃迁产生了两个强的局域激发态,S0→S3跃迁直接导致电荷分离态,小的振子强度预测该电荷转移(CT)跃迁是一弱跃迁,电荷分离态S3衰变到低局域激发态或基态的电荷复合是可能的.  相似文献   

12.
合成了一系列具有刚性结构的推拉型1,2,3,4-四氢喹啉-4-酮衍生物: 1-苄基-1,2,3,4-四氢喹啉-4-酮(BTHQ)、2-(1,2,3,4-四氢喹啉-4-叶立德)丙二腈(THQM)、1,6-二羰基久洛尼定(DOJ)和1,6-二(二氰甲烯基叶立德)久洛尼定(BDCJ).测定了其吸收光谱、单光子荧光光谱和双光子上转换荧光光谱. 这类化合物的单双光子荧光参数都存在着很强的、规则的溶剂效应, 表明分子激发态可能存在较大的极性. 它们的二氯甲烷溶液在800 nm飞秒激光(150 fs)照射下, 能够发射出很强的双光子上转换荧光. 采用非线性透过率法测得四个化合物的双光子吸收截面在0.83~23.95×10-50 cm4•s•photon-1之间. 这类化合物的激发态存在有效的分子内电荷转移, 对双光子吸收和双光子荧光发射有较大贡献.  相似文献   

13.
The electronic and geometrical properties of distyrylbenzene (DSB) are investigated by using chemistry theoretical calculation methods. Specifically, the excited state properties are studied by performing ab initio correlation interaction singlet (CIS) and time‐dependent density functional theory; the ground state and Raman activities are computed by density functional theory with the B3LYP method. Eight conformers of distyrylbenzene are found and they are derived from three isomers which are cis, cis‐, cis, trans‐, and trans, trans‐, respectively. The relative energy shows that each isomer of three types is separated with a large energy barrier, but a small energy difference of each conformer is found if they are in the same type. The transition state also shows the barrier between conformers is lower than isomers. The computed excited transition energies using ZINDO/S based on the optimized geometries at a DFT/B3LYP level with 6–31+G show an excellent agreement with experimental absorption spectra.  相似文献   

14.
Excited state population can be manipulated by resonant chirped laser pulses through pump–dump processes. We investigate these processes in the laser dye LD690 as a function of wavelength by monitoring the saturated absorption of chirped ultrafast pulses. The resulting nonlinear absorption spectrum becomes increasingly complex as the pulse is tuned to shorter wavelengths. However, fluorescence measurements indicate that the excited state population depends weakly on chirp when the pump wavelength is far from the lowest order electronic transition. Using a learning algorithm and closed-loop control, we find nonlinear chirp parameters that optimize features in the transmission spectrum. The results are discussed in terms of competition between excited state absorption and stimulated resonant Raman scattering.  相似文献   

15.
The one-photon absorption (OPA) properties of donor-pi-bridge-acceptor-pi-bridge-donor (D-pi-A-pi-D)-type 2,1,3-benzothiadiazoles (BTD) were studied with two dimensional (2D) site and three dimensional (3D) cube representations. The 2D site representation reveals the electron-hole coherence on electronic state transitions from the ground state. The 3D representation shows the orientation of transition dipole moment with transition density, and the charge redistribution on the excited states with charge difference density. In this paper, we further developed the 2D site and 3D cube representations to investigate the two-photon absorption (TPA) properties of D-pi-A-pi-D-type BTD on electronic transitions between excited states. With the new developed 2D site and 3D cube representations, the orientation of transition dipole moment, the charge redistribution, and the electron-hole coherence for TPA of D-pi-A-pi-D-type BTD on electronic state transitions between excited states were visualized, which promote deeper understanding to the optical and electronic properties for OPA and TPA.  相似文献   

16.
The resonance Raman scattering spectra of dicaesium uranyl tetrachloride (Cs2UO2Cl4) in dimethyl sulfoxide ((CH3)2SO) have been measured under laser excitation of the uranyl ion in resonance with the 1sigma(g)+ --> 1phi(g) Laport-forbidden f-f electronic transitions (520-450 nm) by using 10 output lines of the argon-ion laser at room temperature. The excitation profile of the totally symmetric stretching vibrational mode of uranyl observed at 830 cm(-1) is presented and analyzed in terms of the transform methods which are able to formally bypass multimode complexities. The non-Condon model (generalized B, C-terms of scattering) gives a relatively good agreement with the resonance excitation profile of experiment. Reliable value of the nuclear displacement on going the 1sigma(g)+ --> 1phi(g) electronic transition and the amount of charge transferred from the ligand to uranium of uranyl ion both in the ground and excited states are obtained. It is found that the average number of ligands coordinated equatorically to the central uranium atom affects on the amount of charge transferred from the ligand to uranium, especially in the electronic excited state. As increasing the average number of ligands, the amount of charge transferred from the ligand to uranium increases in the ground state, while in the electronic excited state, the charge transferred decreases.  相似文献   

17.
We develop a model effective Hamiltonian for describing the electronic structures of first-row transition metals in aqueous solutions using a quasidegenerate perturbation theory. All the states consisting of 3d(n) electronic configurations are determined by diagonalizing a small effective Hamiltonian matrix, where various intermolecular interaction terms such as the electrostatic, polarization, exchange, charge transfer, and three-body interactions are effectively incorporated. This model Hamiltonian is applied to constructing the ground and triplet excited states potential energy functions of Ni(2+) in aqueous solution, based on the ab initio multiconfiguration quasidegenerate perturbation theory calculations. We perform molecular dynamics simulation calculations for the ground state of Ni(2+) aqueous solution to calculate the electronic absorption spectral shape as well as the ground state properties. Agreement between the simulation and experimental spectra is satisfactory, indicating that the present model can well describe the Ni(2+) excited state potential surfaces in aqueous solution.  相似文献   

18.
The mono- (1) and dinuclear (2) ruthenium(II) bis(2,2'-bipyridine) complexes of 2,5-di(pyridin-2-yl)pyrazine (2,5-dpp), for which the UV/Vis absorption and emission as well as electrochemical properties have been described earlier, are reinvestigated here by resonance, surface enhanced and transient resonance Raman spectroscopy together with selective deuteration to determine the location of the lowest lying excited metal to ligand charge transfer ((3)MLCT) states. The ground state absorption spectrum of both the mono- and dinuclear complexes are characterised by resonance Raman spectroscopy. The effect of deuteration on emission lifetimes together with the absence of characteristic bipy anion radical modes in the transient Raman spectra for both the mono- and dinuclear complexes bridged by the 2,5-dpp ligand confirms that the excited state is 2,5-dpp based; however DFT calculations and the effect of deuteration on emission lifetimes indicate that the bipy based MLCT states contribute to excited state deactivation. Resonance Raman and surface enhanced Raman spectroscopic (SERS) data for 1 and 2 are compared with that of the heterobimetallic complexes [Ru(bipy)(2)(2,5-dpp)PdCl(2)](2+)3 and [Ru(bipy)(2)(2,5-dpp)PtCl(2)](2+)4. The SERS data for 1 indicates that a heterobimetallic Ru-Au complex forms in situ upon addition of 1 to a gold colloid.  相似文献   

19.
Transient absorption spectroscopy is used to study the excited‐state dynamics of Co3(dpa)4(NCS)2, where dpa is the ligand di(2‐pyridyl)amido. The ππ*, charge‐transfer, and d–d transition states are excited upon irradiation at wavelengths of 330, 400 and 600 nm, respectively. Similar transient spectra are observed under the experimental temporal resolution and the transient species show weak absorption. We thus propose that a low‐lying metal‐centered d–d state is accessed immediately after excitation. Analyses of the experimental kinetic traces reveal rapid conversion from the ligand‐centered ππ* and the charge‐transfer states to this metal‐centered d‐d state within 100 fs. The excited molecule then crosses to a second d–d state within the ligand‐field manifold, with a time coefficient of 0.6–1.4 ps. Because the ground‐state bleaching band recovers with a time coefficient of 10–23 ps, we propose that an excited molecule crosses from the low‐lying d–d state either directly within the same spin system or with spin crossing via the state 2B to the ground state 2A2 (symmetry group C4). In this trimetal string complex, relaxation to the ground electronic surface after excitation is thus rapid.  相似文献   

20.
Resonance Raman and resonance hyper-Raman spectra and excitation profiles have been measured for a "push-pull" donor-acceptor substituted conjugated polyene bearing a julolidine donor group and a nitrophenyl acceptor group, in acetone at excitation wavelengths from 485 to 356 nm (two-photon wavelengths for the nonlinear spectra). These wavelengths span the strong visible to near-UV linear absorption spectrum, which appears to involve at least three different electronic transitions. The relative intensities of different vibrational bands vary considerably across the excitation spectrum, with the hyper-Raman spectra showing greater variation than the linear Raman. A previously derived theory of resonance hyper-Raman intensities is modified to include contributions from purely vibrational levels of the ground electronic state as intermediate states in the two-photon absorption process. These contributions are found to have only a slight effect on the hyper-Rayleigh intensities and profiles, but they significantly influence some of the hyper-Raman profiles. The absorption spectrum and the Raman, hyper-Rayleigh, and hyper-Raman excitation profiles are quantitatively simulated under the assumption that three excited electronic states contribute to the one- and two-photon absorption in this region. The transition centered near 400 nm is largely localized on the nitrophenyl group, while the transitions near 475 and 355 nm are more delocalized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号