首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular orientation of adsorbed molecules forming self‐assembled monolayers can be determined by combining vibrational sum‐frequency generation (SFG) measurements with quantum chemical calculations. Herein, we present a theoretical methodology used to simulate the SFG spectra for different combinations of polarizations. These simulations are based on calculations of the IR vectors and Raman tensors, which are obtained from density functional theory computations. The dependency of the SFG vibrational signature with respect to the molecular orientation is presented for the molecules p‐nitrothiophenol and 2,4‐dinitroaniline. It is found that a suitable choice of basis set as well as of exchange‐correlation (XC) functional is mandatory to correctly simulate the SFG intensities and consequently provide an accurate estimation of the adsorbed molecule orientation. Comparison with experimental data shows that calculations performed at the B3LYP/6‐311++G(d,p) level of approximation provide good agreement with experimental frequencies, and with IR and Raman intensities. In particular, it is demonstrated that polarization and diffuse functions are compulsory for reproducing the IR and Raman spectra, and consequently vibrational SFG spectra, of systems such as p‐nitrothiophenol. Moreover, the investigated XC functionals reveal their influence on the relative intensities, which show rather systematic variations with the amount of Hartree–Fock exchange. Finally, further aspects of the modeling are revealed by considering the frequency dependence of the Raman tensors.  相似文献   

2.
We present a general theory to model the spatially resolved non‐resonant Raman images of molecules. It is predicted that the vibrational motions of different Raman modes can be fully visualized in real space by tip‐enhanced non‐resonant Raman scattering. As an example, the non‐resonant Raman images of water clusters were simulated by combining the new theory and first‐principles calculations. Each individual normal mode gives rise its own distinct Raman image, which resembles the expected vibrational motions of the atoms very well. The characteristics of intermolecular vibrations in supermolecules could also be identified. The effects of the spatial distribution of the plasmon as well as nonlinear scattering processes were also addressed. Our study not only suggests a feasible approach to spatially visualize vibrational modes, but also provides new insights in the field of nonlinear plasmonic spectroscopy.  相似文献   

3.
A convenient reproducible technique is reported for the fabrication of large‐area gold semishell arrays by mechanically pressing porous anodic alumina (PAA) stamps into gold/polymer bilayer structures that serve as robust and cost‐efficient surface‐enhanced Raman‐scattering (SERS) substrates. The surface structure can be tuned further to optimize the enhancement factor according to optional PAA fabrication parameters and imprinting pressures. Finite‐difference time‐domain calculations indicate that the structure may possess excellent SERS characteristics due to the high density and abundance of hot spots.  相似文献   

4.
Graphene‐enhanced Raman scattering (GERS) is emerging as an important method due to the need for highly reproducible, quantifiable, and biocompatible active substrates. As a result of its unique two‐dimensional carbon structure, graphene provides particularly large enhanced Raman signals for molecules adsorbed on its surface. In this work, the GERS signals of a test molecule, 4‐mercaptobenzoic acid (4‐MBA), with reproducible enhancement factors are discussed and compared with surface‐enhanced Raman scattering (SERS) signals from highly active substrates, covered with spherical silver nanoparticles. It is shown that chemical interactions between the molecule and graphene can result in a frequency shift in the graphene‐enhanced Raman signal of the molecule.  相似文献   

5.
The importance of identifying DNA bases at the single‐molecule level is well recognized for many biological applications. Although such identification can be achieved by electrical measurements using special setups, it is still not possible to identify single bases in real space by optical means owing to the diffraction limit. Herein, we demonstrate the outstanding ability of scanning tunneling microscope (STM)‐controlled non‐resonant tip‐enhanced Raman scattering (TERS) to unambiguously distinguish two individual complementary DNA bases (adenine and thymine) with a spatial resolution down to 0.9 nm. The distinct Raman fingerprints identified for the two molecules allow to differentiate in real space individual DNA bases in coupled base pairs. The demonstrated ability of non‐resonant Raman scattering with super‐high spatial resolution will significantly extend the applicability of TERS, opening up new routes for single‐molecule DNA sequencing.  相似文献   

6.
The vibrational nonlinear activity of films of 2,4‐dinitrophenyl phospholipid (DNP) at the solid interface is measured by sum‐frequency generation spectroscopy (SFG). Hybrid bilayers are formed by a Langmuir–Schaefer approach in which the lipid layer is physisorbed on top of a self‐assembled monolayer of dodecanethiol on Pt with the polar heads pointing out from the surface. The SFG response is investigated in two vibrational frequency domains, namely, 3050–2750 and 1375–1240 cm?1. The first region probes the CH stretching modes of DNP films, and the latter explores the vibrational nonlinear activity of the 2,4‐dinitroaniline moiety of the polar head of the lipid. Analysis of the CH stretching vibrations suggests substantial conformational order of the aliphatic chains with only a few gauche defects. To reliably assign the detected SFG signals to specific molecular vibrations, DFT calculations of the IR and Raman activities of molecular models are performed and compared to experimental solid‐state spectra. This allows unambiguous assignment of the observed SFG vibrations to molecular modes localized on the 2,4‐dinitroaniline moiety of the polar head of DNP. Then, SFG spectra of DNP in the 1375–1240 cm?1 frequency range are simulated and compared with experimental ones, and thus the 1,4‐axis of the 2,4‐dinitrophenyl head is estimated to have tilt and rotation angles of 45±5° and 0±30°, respectively.  相似文献   

7.
We report on the formation of silver subsurface ion‐exchanged metal oxide (silver SIMO) glasses and their surface‐enhanced Raman scattering (SERS) activity. The samples were prepared by a combined thermal and chemical three‐step methodology and characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), environmental electron scanning microscopy (ESEM), and UV/Vis spectroscopy. This unique method provides SERS substrates with protection against contamination and strong, reliable and reproducible SERS enhancement. The Raman enhancement factors of the long‐term stable SIMO glasses were estimated to approximately 107.  相似文献   

8.
The one‐dimensional (1D) transition‐metal oxide MoO3 belt is synthesized and characterized with X‐ray diffraction, scanning electron microscopy, and Raman spectroscopy. Charge‐transfer‐(CT) enhanced Raman scattering of 4‐mercaptobenzoic acid (4‐MBA) on a 1D MoO3 belt was investigated experimentally and theoretically. The chemical enhancement of surface‐enhanced Raman scattering (SERS) of 4‐MBA on the MoO3 belt by CT is in the order of 103. The SERS of 4‐MBA was investigated theoretically by using a quantum chemical method. The remote SERS of 4‐MBA along the 1D MoO3 belt (the light excitation to one side of the MoO3 belt, and the SERS spectrum is collected on the other side of the MoO3 belt) is also shown experimentally, which provides potential applications of SERS. The incident polarization dependence of remote SERS spectra has also been investigated experimentally.  相似文献   

9.
The CuI‐catalyzed 1,3‐dipolar azide‐alkyne cycloaddition (CuAAC) has arisen as one of the most useful chemical transformations for introducing complexity onto surfaces and materials owing to its functional‐group tolerance and high yield. However, methods for monitoring such reactions in situ at the widely used silica/solvent interface are hampered by challenges associated with probing such buried interfaces. Using the surface‐specific technique broadband sum frequency generation (SFG), we monitored the reaction of a benzyl azide monolayer in real time at the silica/methanol interface. A strong peak at 2096 cm?1 assigned to the azides was observed for the first time by SFG. Using a cyano‐substituted alkyne, the decrease of the azide peak and the increase of the cyano peak (2234 cm?1) were probed simultaneously. From the kinetic analysis, the reaction order with respect to copper was determined to be 2.1, suggesting that CuAAC on the surface follows a similar mechanism as in solution.  相似文献   

10.
Sum frequency generation vibrational spectroscopy (SFG-VS) is a robust technique for interfacial investigation at molecular level. The performance of SFG-VS mostly depends on the spectral resolution of the SFG system. In this research, a simplified function was deduced to calculate the spectral resolution of picosecond SFG system and the lineshape of SFG spectra based on the Guassian shaped functions of IR beam and visible beam. The function indicates that the lineshpe of SFG spectra from nonresonant samples can be calculated by the Guassian widths of both IR beam and visible beam. And the Voigt lineshape of SFG spectra from vibrational resonant samples can be calculated by the Homogeneous broadening (Lorentzian width) and Inhomogeneous broadening (Guassian width) of vibrational modes, as well as the Guassian widths of both IR beam and visible beam. Such functions were also applied to verify the spectral resolution of the polarization-resolved and frequency-resolved picosecond SFG-VS system which was developed by our group recently. It is shown that the linewidths of IR beams that generated from current laser system are about 1.5 cm-1. The calculated spectral resolution of current picosecond IR scanning SFG-VS system is about 4.6 cm-1, which is consist with he spctral resolution shown in the spectra of cholesterol monolayer (3.5-5 cm-1).  相似文献   

11.
The surface‐enhanced Raman scattering (SERS) spectrum of pyridine adsorbed on Ag20 cluster (pyridine‐Ag20) at room temperature is calculated by performing ab initio molecular dynamics simulations in connection with a Fourier transform of the polarizability autocorrelation function to investigate the static chemical enhancement behind the SERS spectrum. The five enhanced vibrational modes of pyridine, namely, υ6a, υ1, υ12, υ9a, and υ8a, can be assigned and identified by using a new analytical scheme, namely, single‐frequency‐pass filter, which is based on a Fourier transform filtering technique. To understand the factors evoking the enhancement in the SERS spectrum, the dynamic properties of molecular structures and charges for both of the free pyridine and adsorbed pyridine are analyzed. The calculated results indicate that the vibrational amplitudes of adsorbed pyridine are enhanced due to both of the electron transfer from pyridine to Ag20 cluster and the softening of pyridine bond. In addition, the N‐Ag stretching within pyridine‐Ag20 will couple with these five vibrational modes of pyridine. Consequently, the electron transfer between pyridine and Ag20 cluster induced by different molecular vibrational modes prompts the redistribution of electron density of pyridine. These factors collectively cause the noticeable change in polarizability during molecular vibrations and hence result in the enhancement of Raman peaks. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
The doubly resonant IR-UV sum-frequency vibrational spectroscopy (SFVS) of 1,1'-bi-2-naphthol (BN) solution and its dispersion spectra are analyzed and computed using the ZINDO//AM1 calculation and the direct approach of Raman scattering tensor calculation, which is based on calculations of Franck-Condon factors and on differentiation of the electronic transition moments with respect to the vibrational normal modes. The calculated results indicate that, for the most intense vibrational bands observed in the SFVS experiment, the calculated frequencies, symmetry, order, intensities, and pattern of the enhanced vibrational modes agree with experiment qualitatively, and due to the Franck-Condon progression, there are the doublet peaks in the corresponding resonant sum-frequency dispersion spectra. The polarization resonance Raman spectra of BN for the vibrational modes appearing in SFVS are also computed and associated with the experiment SFVS of BN. This direct evaluation approach of Raman tensors may provide a way of assigning the doubly resonant IR-UV SFVS.  相似文献   

13.
A novel near‐field optical microscope based on a parabolic mirror is used for recording high‐resolution tip‐enhanced photoluminescence (PL) and Raman images with unprecedented sensitivity and contrast. The measurements reveal small islands on the Au surface with dimensions of only a few nanometres with locally enhanced Au PL. These islands appear as nanometre‐sized hot spots in tip‐enhanced Raman microscopy when benzotriazole molecules adsorbed on the Au surface serve as local sensors for the optical field. The spectra show that localized plasmons are the cause of both the locally enhanced Au PL and enhanced Raman scattering. This finding suggests that the dispersive background in the surface‐enhanced Raman spectra can be explained simply by the enhanced Au PL in the gap. Furthermore, our results show that the surface flatness must be better than 1 nm, to provide an optically homogeneous substrate for near‐field enhanced PL and Raman spectroscopy.  相似文献   

14.
Summary: Surface‐enhanced Raman scattering (SERS)‐active substrates with high enhancement were prepared by an in situ reduction method. Novel silver/poly(vinyl alcohol) (PVA) nanocomposite films were obtained, in which the silver nitrate, poly(γ‐glutamic acid) (PGA), and PVA acted as precursor, stabilizer, and polyol reducant, respectively. The UV‐visible spectra of the as‐fabricated films showed that the surface plasmon resonance (SPR) absorption band was narrow and of a stronger intensity, which indicates that the Ag nanoparticle size distribution on the substrate was highly uniform. This finding was further confirmed by X‐ray diffraction (XRD), transmission electron microscopy (TEM), and field‐emission scanning electron microscope (FE‐SEM) measurements. It was found that a PGA‐stabilized PVA nanocomposite film revealed the presence of well‐dispersed spherical silver nanoparticles with an average diameter of 90 nm. The new substrate presents high SERS enhancement and the enhanced factor is estimated to be 106 for the detection of benzoic acid.

The Raman scattering enhancement factor for the Raman spectra of benzoic acid on the various nanocomposite films.  相似文献   


15.
Surface‐enhanced resonance Raman scattering (SERRS) is not realized for most molecules of interest. Here, we developed a new SERRS platform for the fast and sensitive detection of 2,4,6‐trinitrotoluene (TNT), a molecule with low Raman cross section. A cationic surfactant, cetylpyridinium chloride (CPC) was modified on the surface of silver sols (CP‐capped Ag). CPC not only acts as the surface‐seeking species to trap sulfite‐sulfonated TNT, but also undergoes complexation with it, resulting in the presence of two charge‐transfer bands at 467 and 530 nm, respectively. This chromophore absorbs the visible light that matches with the incident laser and plasmon resonance of Ag sols by the use of a 532.06 nm laser, and offered large resonance Raman enhancement. This SERRS platform evidenced a fast and accurate detection of TNT with a detection limit of 5×10?11 M under a low laser power (200 μW) and a short integration time (3 s). The CP‐capped Ag also provides remarkable sensitivity and reliable repeatability. This study provides a facile and reliable method for TNT detection and a viable idea for the SERS detection of various non‐resonant molecules.  相似文献   

16.
We examined the deboronation reaction of 4‐mercaptophenylboronic acid (4MPBA) via fructose and glucose on silver surfaces by means of surface‐enhanced Raman scattering (SERS) at the excitation wavelengths of 488, 514, and 633 nm. The SERS spectra on silver nanoparticles clearly exhibited specific spectral signatures of thiophenol (TP) peaks, indicating a deboronation reaction of 4MPBA on the surfaces, whereas no strong TP peaks were observed on gold nanoparticles. The vibrational bands at 417, 999, 1021, and 1574 cm?1 in the Ag SERS spectra could correspond to the in‐plane aromatic ring modes in TP. X‐ray photoelectron spectroscopy also supported the surface reaction on Ag by referring the B1s peaks at ~193 eV. The ratiometric Raman measurements of the band at 1574 cm?1, with respect to that at 1587 cm?1, revealed fructose and glucose quantification in the concentration range of 1–10 mm . We did not identify such changes for mannose, sucrose, and sialic acid. The SERS peaks of 4MPBA on roughened Ag plates also exhibited TP bands to show the time‐dependent spectral change. Our findings indicate that the deboronation of 4MPBA and conjugation with fructose and glucose may be facilitated efficiently on silver surfaces for their quantification. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Three‐dimensional nanostructured metallic substrates for enhanced vibrational spectroscopy are fabricated by self‐assembly. Nanostructures consisting of one to 20 depositions of 13 nm‐diameter Au nanoparticles (NPs) on Au films are prepared and characterized by means of AFM and UV/Vis reflection–absorption spectroscopy. Surface‐enhanced polarization modulation infrared reflection–absorption spectroscopy (PM‐IRRAS) is observed from Au NPs modified by the probe molecule 4‐hydroxythiophenol. The limitation of this kind of substrate for surface‐enhanced PM‐IRRAS is discussed. The surface‐enhanced Raman scattering (SERS) from the same probe molecule is also observed and the effect of the number of Au‐NP depositions on the SERS efficiency is studied. The SERS signal from the probe molecule maximizes after 11 Au‐NP depositions, and the absolute SERS intensities from different batches are reproducible within 20 %. In situ electrochemical SERS measurements show that these substrates are stable within the potential window between ?800 and +200 mV (vs. Ag/AgCl/sat. Cl?).  相似文献   

18.
Here, we demonstrate how sum frequency generation (SFG), a vibrational spectroscopy based on a nonlinear three‐photon mixing process, may provide a direct and unique fingerprint of bio‐recognition; This latter can be detected with an intrinsically discriminating unspecific adsorption, thanks to the high sensitivity of the second‐order nonlinear optical (NLO) response to preferential molecular orientation and symmetry properties. As a proof of concept, we have detected the biological event at the solid/liquid interface of a model bio‐active antigen platform, based on a solid‐supported hybrid lipid bilayer (ss‐HLB) of a 2,4‐dinitrophenyl (DNP) lipid, towards a monoclonal mouse anti‐DNP complementary antibody.  相似文献   

19.
The potential‐induced adsorption change of 2‐amino‐4,5‐imidazoledicarbonitrile (AIDCN) on Ag electrode surfaces has been examined by surface‐enhanced Raman scattering (SERS) in an applied potential range between ?1.0 and 0.2 V. Upon adsorption, AIDCN has a substantial interaction with the Ag metal surfaces via its two nitrile groups. The CN stretching peaks at ~2200 cm?1 appeared to be more intensified and redshifted at a negative potential. The deconvolution peak analysis of the CN bands at various voltages suggests that there should be a change in binding modes of AIDCN on Ag surfaces. This potential‐dependent orientation change appeared to be reversible. The density functional theory (DFT) calculation of AIDCN on Ag cluster atoms is used to explain its potential‐dependent adsorption. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Surface‐enhanced Raman scattering (SERS) is one of the most straightforward applications of the so‐called nanoplasmonics. This powerful molecular spectroscopy technique is based on the enhancement of the inelastic scattering from molecules located near nanostructured metallic surfaces when these are illuminated and surface plasmons are excited. The analytical applications of SERS are hindered when the Raman cross‐section of the analyte is too low, which is often the case in inorganic molecular species. This problem is even more serious when atomic species are to be identified, since these cannot display a vibrational signal. Herein we discuss the recent advancements toward the SERS detection of small inorganic compounds, including both molecular and atomic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号