首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
7‐Amino‐3‐phenylazo‐2‐methyl‐4H‐pyrazolo[1,5‐a]pyrimidine‐5‐one ( 3 ) was synthesized by the reaction of 5‐amino‐3‐methyl‐4‐phenylazo‐1H‐pyrazole and 2‐aminobenzothiazole with ethyl cyanoacetate in acetic acid at 150°C. Four novel heterocyclic azo disperse dyes were obtained by the coupling of heterocyclic amines‐based diazonium chloride with compound 3 . They were purified and characterized by elemental analysis, FTIR, and 1H NMR. Furthermore, solvatochromic behaviors of related dyes were studied in detail by using ultraviolet–visible absorption spectrometer. The experimental data were supported by density functional theory using b3lyp/cc‐pvtz level calculations, and a detailed analysis of predicted tautomeric structures was made.  相似文献   

2.
A novel series of coumarin substituted triazolo‐thiadiazine derivatives were designed and synthesized by using 5‐methyl isoxazole‐3‐carboxylic acid ( 1 ), thiocarbohydrazide ( 2 ), and various substituted 3‐(2‐bromo acetyl) coumarins ( 4a , 4b , 4c , 4e , 4d , 4f , 4g , 4h , 4i , 4j ). Fusion of 5‐methyl isoxazole‐3‐carboxylic acid with thiocarbohydrazide resulted in the formation of the intermediate 4‐amino‐5‐(5‐methylisoxazol‐3‐yl)‐4H‐1,2,4‐triazole‐3‐thiol ( 3 ). This intermediate on further reaction with substituted 3‐(2‐bromo acetyl) coumarins under simple reaction conditions formed the title products 3‐(3‐(5‐methylisoxazol‐3‐yl)‐7H‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazin‐6‐yl‐2H‐chromen‐2‐ones ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j ) in good to excellent yields. All the synthesized compounds were well characterized by physical, analytical, and spectroscopic techniques.  相似文献   

3.
A series of novel 5‐arylazo‐thiazol‐2‐ylcarbamoyl‐thiophene derivatives was synthesized, and their chemical structures were secured by elemental and spectroscopic analyses. Their versatility for pharmaceutical purposes and textile dyeing as disperse dyes were reported. The synthesized dyes were applied to polyester fabrics by using high temperature dyeing method at 130°C. The dyed polyester fabrics displayed very good washing and perspiration fastness and moderate light fastness. Finally, the synthesized compounds showed biological activities against Bacillus subtilis, Staphylococcus aureus (Gram positive bacteria), Escherichia coli, and Pseudomonas aeruginosa (Gram‐negative bacteria), while no effect had been reported against fungi. The minimum inhibitory concentration of the most active compound was evaluated.  相似文献   

4.
A new series of synthesis and biological screening of 2‐(2‐aryl‐4‐methyl‐thiazol‐5‐yl)‐5‐((2‐aryl/benzylthiazol‐4‐yl)methyl)‐1,3,4‐oxadiazole derivatives 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i was achieved by condensation of 2‐(2‐aryl/benzylthiazol‐4‐yl)acetohydrazide 2a , 2b , 2c with 4‐methyl‐2‐arylthiazole‐5‐carbaldehyde 3a , 3b , 3c followed by oxidative cyclization of N'‐((4‐methyl‐2‐arylthiazol‐5‐yl)methylene)‐2‐(2‐aryl/benzylthiazol‐4‐yl)acetohydrazide 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i using iodobenzene diacetate as oxidizing agent. All the synthesized compounds were screened for their in vitro antifungal activity against Candida albicans, Candida tropicalis, Aspergillus niger, and Aspergillus flavus. Some of the synthesized compounds showed good antifungal activity.  相似文献   

5.
NMR spectra of the synthesized azo dyes, 5‐arylazo‐pyrimidine (1H,3H,5H)‐2,4,6‐triones (5a–g), 1,3‐dimethyl‐5‐arylazo‐pyrimidine (1H,3H,5H)‐2,4,6‐triones (6a–g), and 5‐arylazo‐2‐thioxo‐pyrimidine (1H,3H,5H)‐4,6‐diones (7a–g) were studied in (CD3)2SO (three drops of CD3OD were added into solutions of the dyes in two different concentrations). All dyes showed intramolecular hydrogen bonding. Dyes 5a–7a showed bifurcated intramolecular hydrogen bonds. Tautomeric behaviours of some of N‐methylated azo dyes (6a‐g) were studied in two different concentrations. The solvent–substrate proton exchange of dyes 5a–d, 6a and 7a–e was examined in presence of three drops of CD3OD. The dyes which were soluble in (CD3)2SO containing CD3OD showed isotopic splitting (β‐isotope effect) in the 13C NMR spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The synthesis of some 3‐(4‐aryl‐benzofuro[3,2‐b]pyridin‐2‐yl)coumarins 3a–r has been carried out by the reaction of 3‐coumarinoyl methyl pyridinium salts 1a–c with 2‐arylidene aurones 2a–f in the presence of ammonium acetate and acetic acid under Kröhnke's reaction conditions. All the synthesized compounds were characterized by analytical and spectral data. They have been screened for their antibacterial activity against Escherichia coli (ATCC 25922) as Gram‐negative bacteria, Bacillus subtillis (ATCC 1633) as Gram‐positive bacteria and antifungal activity against Aspergillus niger (ATCC 9029).  相似文献   

7.
In this study, methyl 2‐(quinolin‐8‐yloxy) acetate ( 2 ) obtained by reaction of 8‐hydroxyquinoline ( 1 ) with methyl chloroacetate was condensed with hydrazine hydrate to afford the carbohydrazide ( 3 ). Thio/semicarbazide derivatives ( 4a , 4b , 4c , 4d , 4e , 4f , 4g ) were obtained by treatment of the 3 with substituted phenyl iso/thioisocyanates. The 4a , 4b , 4c , 4d , 4e , 4f , 4g on acidic and basic intramolecular cyclization led to N‐(aryl)‐5‐((quinolin‐8‐yloxy)methyl)‐1,3,4‐oxa/thiadiazol‐2‐amines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g ) and 4‐aryl‐5‐((quinolin‐8‐yloxy)methyl)‐2H‐1,2,4‐triazole‐3(4H)‐thiones ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ), respectively. All the synthesized compounds were characterized by spectroscopic techniques and elemental analyses. The thiosemicarbazide ( 4c ) was also confirmed by X‐ray crystallography.  相似文献   

8.
Some new target products 5‐aryl‐4,5‐dihydro‐3‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐1‐(4‐phenylthiazol‐2‐yl)pyrazoles 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j have been synthesized by reaction of 2‐bromo‐1‐phenylethanone and compounds 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j which were prepared from the combination of thiosemicarbazide and (E)‐3‐aryl‐1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐prop‐2‐en‐1‐ones 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j . All the structures were established by MS, IR, CHN, and 1H NMR spectra data. Synthesis of structure diversity is applied. J. Heterocyclic Chem., (2011).  相似文献   

9.
A new series of 2,4‐diaryl‐6‐methyl‐5‐nitropyrimidines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i ) were synthesized in good yields by Suzuki–Miyaura coupling of 2,4‐dichloro‐6‐methyl‐5‐nitropyrimidine ( 3 ) with various aryl boronic esters ( 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i ) in the presence of 1,1′‐ bis(diphenylphosphino)ferrocene dichloropalladium(II) (Pd(dppf)2Cl2). Further, antibacterial and antioxidant properties were screened for the title compounds 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i . Most of the compounds possessed significant activity against Gram‐positive bacteria Staphylococcus aureus and Bacillus subtilis and Gram‐negative bacteria Escherichia coli and Klebsiella pneumoniae. The antioxidant activity of the title compounds showed significant antioxidant activity when compared with vitamin C.  相似文献   

10.
The title compound, [Cu(C19H26N3O)2], is the first reported complex of the alkyl­pyrazolone‐derived ligand 1‐n‐hexyl‐3‐methyl‐4‐[1‐(phenylimino)propyl]‐1H‐pyrazol‐5(4H)‐one. The most notable feature is the imine–enol character presented by the ligand due to coordination, in spite of its enamine–ketone structure in the free state. The ligand chelates through N and O atoms, resulting in a square‐planar coordination around the CuII atom, which lies on an inversion centre.  相似文献   

11.
Some new compounds (E)‐3‐aryl‐1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐prop‐2‐en‐1‐ones 5a–e were prepared by 1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐ethanone and various aromatic aldehydes. Then one pot reaction was happened by compounds 5a–e with hydrazine hydrate in acetic acid or propionic acid, respectively, to give the title compounds 1acyl‐5‐aryl‐3‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐4,5‐dihydro‐1H‐pyrazoles 6a–i . All structures were established by MS, IR, CHN, 1H‐NMR and 13C‐NMR spectral data. J. Heterocyclic Chem., (2012).  相似文献   

12.
This study is in continuation of our work related to 5‐pyrazolones aimed at synthesizing new heterocycles with dyeing and anticipated biological properties. Compounds 1 and 2 ; 1‐methyl‐ or 1‐(2,4‐dimethylphenyl)‐3‐phenyl‐1H‐pyrazol‐5(4H)‐one, 3 ; 1‐methyl‐5‐oxo‐3‐phenyl‐4,5‐dihydro‐1H‐pyrazole‐4‐carbaldehyde and 4 ; 2‐(1‐methyl‐5‐oxo‐3‐phenyl‐1H‐pyrazol‐4(5H)‐ylidene)‐3‐phenylthiazolidin‐5‐one were prepared and subjected to diazotation with aromatic amines and diamines. New azo ( 1a – c , 2a, b , 3a , b , 4a , c ) and bisazo dyes ( 2c , d , 4b ) were obtained, and their structures were confirmed by spectroscopic and analytical methods. In addition, UV–vis measurements, dyeing performance, and fastness tests were carried out for all compounds.  相似文献   

13.
The 2,3‐disubstituted 6‐fluoro‐7‐(4‐methyl‐1‐piperazinyl)‐quinoxalines ( 3–11 ) were synthesized for bioassay via reaction of 1.2‐diamino‐4‐fluoro‐5‐(4‐methyl‐1‐piperazinyl)benzene (2) with the appropriate 1,2‐dicarbonyl compounds. However, none of the tested compounds 3–11 showed significant in vitro activ ity against E. coli ATCC11229, S. aureus ATCC6538 and C.albicans SATCC10231.  相似文献   

14.
4‐Methyl acetanilide ( 1 ) on treatment with bromine in acetic acid, followed by hydrolysis with dilute HCl/NaOH solution, yielded 2‐bromo‐4‐methyl aniline ( 2 ), which on treatment with sodium thiocyanate in acetic acid afforded 2‐amino‐4‐bromo‐6‐methyl benzothiazole ( 3 ). Compound 3 in ethylene glycol was heated at 150°C with 80% hydrazine hydrate to get 4‐bromo‐2‐hydrazino‐6‐methyl benzothiazole ( 4 ). This hydrazino compound 4 on heating with formic acid for 3 h yielded 4‐bromo‐2‐hydrazinoformyl‐6‐methyl benzothiazole ( 5 ). Same compound 4 when heated independently with formic acid for 6 h/urea for 3 h/carbon disulfide in alkali afforded 5‐bromo‐7‐methyl ( 6 )/5‐bromo‐3‐hydroxy‐7‐methyl ( 7 )/5‐bromo‐3‐mercapto‐7‐methyl ( 8 )‐1,2,4‐triazolo‐[3,4‐b]‐benzothiazoles, respectively. Compound 4 on heating with acetic acid/acetic anhydride gave acetyl benzothiazolyl derivative 9 , which on cyclization with orthophosphoric acid yielded 5‐bromo‐3,7‐dimethyl‐1,2,4‐triazolo‐[3,4‐b]‐benzothiazole ( 10 ). All these newly synthesized compounds were screened for antimicrobial activity against Escherichia coli (Gram ?ve), Bacillus subtilis (Gram +ve), Erwinia carotovora, and Xanthomonas citri using ampicillin, streptomycin, and penicillin as a standard for comparison.  相似文献   

15.
A novel fluorinated diamine monomer, 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐2,5‐di‐tert‐butylbenzene ( 2 ), was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and 2,5‐di‐tert‐butylhydroquinone in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C. Fluorinated polyimides ( 5a – 5f ) were synthesized from diamine 2 and various aromatic dianhydrides ( 3a – 3f ) via thermal or chemical imidization. These polymers had inherent viscosities of 0.77–1.01 dL/g. The 5 series polyimides were soluble in N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, and N,N‐dimethylformamide and were even soluble in dioxane, tetrahydrofuran, and dichloromethane. 5 (C) showed cutoff wavelengths between 363 and 404 nm and yellowness index (b*) values of 6.5–40.2. The polyimide films had tensile strengths of 93–114 MPa, elongations to break of 9–12%, and initial moduli of 1.7–2.1 GPa. The glass‐transition temperatures were 255–288 °C. The temperatures of 10% weight loss were all above 460 °C in air or nitrogen atmospheres. In comparison with a nonfluorinated polyimide series based on 1,4‐bis(4‐aminophenoxy)‐2,5‐di‐tert‐butylbenzene, the 5 series showed better solubility and lower color intensity, dielectric constants, and moisture absorption. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2272–2284, 2004  相似文献   

16.
5‐Amino‐3‐methyl‐4‐phenylazo‐1H ‐pyrazole and ethyl cyanoacetate reacted in solvent‐free media at 150°C to produce 7‐amino‐3‐phenylazo‐2‐methyl‐4H ‐pyrazolo[1,5‐a]pyrimidine‐5‐one ( 3 ). A series of aromatic amines was coupled using this compound ( 3 ) and nitrous acid to produce new pyrazolo[1,5‐a] pyrimidine derivatives with two arylazo groups 4(a‐m) . The structures of these dyes were determined via UV–vis, Fourier transform infrared, proton nuclear magnetic resonance, high‐resolution mass spectral data, and elemental analysis. After synthesis, the solvent and acid–base effects of the dyes were investigated within the UV–vis region. The antimicrobial properties of the dyes were also studied. All dyes exhibited activity against Gram‐positive and Gram‐negative bacteria, and even against fungi. The results were compared to conventional reference results from the antibiotics ciprofloxacin and ketoconazole. Antioxidant potentials were analyzed using in vitro antioxidant models on the basis of DPPH (1,1‐d iphenyl‐2‐picrylhydrazyl) radical scavenging activities. Most of the compounds exhibited excellent antioxidant activities. In particular, compound 4b had a higher activity than Vitamin C.  相似文献   

17.
Novel 2‐(substituted)‐5‐(1‐methyl‐1H‐indazol‐3‐yl)‐oxazoles ( 13 ) were synthesized in moderate yields, from 1‐methyl‐1H‐Indazole 3‐carboxylic acid ( 1 ), by converting it into a variety of amides ( 12 ) and further its heterocyclization. The structures of all the compounds have been elucidated on the basis of IR, 1H‐NMR, and HRMS.  相似文献   

18.
In this study, 10 different substituted aromatic bis‐benzaldehydes were synthesized by treating hydroxy benzaldehydes with various dihaloalkanes. Bis aldehydes 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j were treated with 2‐(5‐phenyl‐1H‐tetrazole‐1‐yl)acetohydrazide ( 3 ) in acidic medium and in the presence of ammonium acetate to yield a series of new isomeric bis(2‐(5‐((5‐phenyl‐1H‐tetrazol‐1‐yl)methyl)‐4H‐1,2,4‐triazol‐3‐yl)phenoxy)alkanes ( 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j ) in excellent to good yield. The newly synthesized compounds were characterized by the available spectroscopic analysis.  相似文献   

19.
In this study, (5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐carboxylic acid hydrazide ( 5 ) was synthesized by the condensation of methyl (5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐carboxylate ( 4 ) with NH2NH2⋅H2O. The (5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐carboxylic acid 2‐[(arylamino)carbonyl]hydrazides 6a – 6q were prepared by the reaction of 5 with corresponding substituted aryl isocyanates, and the N‐{5‐[(5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐yl]‐1,3,4‐oxadiazol‐2‐yl}arenamines 7a – 7q were obtained via the cyclization reaction of 6a – 6q in the presence of POCl3. The synthesized compounds have a rigid morphine structure, including the 6,14‐endo‐etheno bridge and the 5‐(arylamino)‐1,3,4‐oxadiazol‐2‐yl residue at C(7) adopting the (S)‐configuration (7α). The structures of the compounds were confirmed by high‐resolution mass spectrometry (HR‐MS) and various spectroscopic methods such as FT‐IR, 1H‐NMR, 13C‐NMR, APT, and 2D‐NMR (HETCOR, COSY, INADEQUATE).  相似文献   

20.
Cobalt complexes 1 – 4 bearing N,O‐chelate ligands based on condensation products of 1‐phenyl‐3‐methyl‐4‐benzoyl‐5‐pyrazolone with aniline, o‐methylaniline, α‐naphthylamine, and p‐nitroaniline, respectively, were synthesized, and the structures of 1 and 4 were characterized by single‐crystal X‐ray diffraction analyses. The bis(β‐ketoamine) cobalt complexes could act as moderately active catalyst precursors for norbornene polymerization with the activation of methylaluminoxane. This catalytic reaction proceeded mainly through a vinyl‐type polymerization mechanism. 1H NMR and IR showed that in all cases, a small amount of double bonds raised from ring‐opening metathesis polymerization (ROMP) was present in the polymerization products. The variation of the polymerization conditions affected the ROMP unit ratio in the polynorbornenes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5535–5544, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号