首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this work, peripheral or nonperipheral tetra‐[4‐(9H‐carbazol‐9‐yl)phenoxy] substituted cobalt(II), manganese (III) phthalocyanines were synthesized for the first time. Their acetylcholinesterase from Electrophorus electricus (AChE), butyrylcholinesterase equine serum (BuChE), and α‐glucosidase Saccharomyces cerevisiae inhibition were investigated spectrophotometrically. Finally, in vitro cytotoxicities of the compounds were investigated on human neuroblastoma (SH‐SY5Y) cell line using MTT cell viability assay. The compounds inhibited to enzymes in the range of 7.39 ± 0.25–35.29 ± 2.49 μM with IC50 values for AChE and 14.38 ± 0.66–58.02 ± 4.94 μM for BuChE as compared with galantamine, which used as a positive control. For α‐glucosidase, all compounds had stronger inhibition action than acarbose according to the IC50 values. The IC50 values of N? Co and N? Mn were found to be 3.05 ± 0.10 and 15.82 ± 1.85 μM, respectively. The results of cytotoxicity showed that the IC50 values were above 100 μM showing the compounds had low cytotoxic action against SH‐SY5Y cell line for 24 h. Overall, carbazole substituted nonperipheral compounds can be considered as a potential agent for the treatment of Alzheimer's diseases and diabetes mellitus.  相似文献   

2.
Enzyme inhibitors are vital aspects for studying enzymes and are employed as drugs to treat certain disorders, thus implying pivotal role in drug discovery. In the current study, a series of triazole compounds 4(a-o) were synthesised to explore their inhibitory potential against α-glucosidase and urease enzymes. These derivatives with dichlorophenyl substituents were prepared by cyclization of thiosemicarbazides and their structures were confirmed through spectroanalytical techniques. The in vitro biological screening revealed that the compounds 4a, 4b, 4k, 4l, 4m, 4o having IC50 values of 121.09 ± 1.25, 137.22 ± 0.22, 110.4 ± 2.4, 114.79 ± 1.1, 146.72 ± 1.29, 94.21 ± 0.15 [µM] respectively, exhibited good potential α-glucosidase inhibition, in comparison to Acarbose: IC50 51.23 µM, while the compounds 4a, 4b, 4c, 4k, 4l, having IC50 values of 48.52 ± 0.39, 52.22 ± 1.37, 60.98 ± 0.34, 37.06 ± 0.51, 38.66 ± 1.7 [µM] respectively exhibited good potential for urease inhibition near to standard(Thiourea: IC50 24.14 [µM]). These in vitro findings were accompanied further by molecular docking simulations, which revealed significant binding interactions of the synthesized derivatives within the active sites of the enzymes.  相似文献   

3.
A new series of benzimidazolone bridged triheterocyclic compounds bearing thiosemicarbazide, thiadiazole, triazole, moieties was synthesized and then screened for their in vitro urease, α-glucosidase, and acetylcholinesterase inhibition properties for the first time. All the synthesized compounds showed an outstanding urease inhibitory effect when compared with standards. Compounds 1 , 4 , 5b , 5d , 6b , 6d , 7b , and 7d showed significant acetylcholinesterase inhibitory activity with IC50 values between 7.32 ± 0.58 and 12.52 ± 0.13 μg/ml comparable to donepezil (15.12 ± 0.20 μg/ml). Compound 5c , having thiosemicarbazide moiety at the positions N-1 and N-3 of benzimidazolone nucleus, showed the highest α-glucosidase inhibitory activity (IC50 = 11.42 ± 0.11 μg/ml).  相似文献   

4.
This study aim to synthesize new 1,3,4-oxadiazole derivatives incorporating mefenamic acid as promising α-glucosidase and urease inhibitors, potentially leading to the treatment of postprandial hyperglycemia as well as H. pylori related disorders. In this regards, we have designed a series of Mefenamic acid derivatives. The synthetic compounds were structurally elucidated through 1H NMR, 13C NMR and HR-EIMS analysis. The biological evaluation of these derivatives against α-glucosidase and urease enzyme depicted some novel derivatives with potent inhibition against the said enzymes. All the derivatives exhibited potent inhibition against α-glucosidase enzymes with IC50 ranging from 25.81 ± 1.63–113.61 ± 1.31 µM against standard drug acarbose (IC50 = 375.82 ± 1.76 µM) while with respect to urease these derivatives possessed inhibitory potential varied between IC50 = 8.04 ± 1.01–58.18 ± 1.03 µM against the standard thiourea (IC50 = 21.0 ± 1.76 µM). The cell viability results revealed that all of the derivatives were found least cytotoxic. Furthermore, molecular docking studies of the most potent derivatives identify number of key features involved in binding interactions between potential inhibitors and the enzyme's active site.  相似文献   

5.
Abstract

Urease inhibition potential of compound (1), guaiane-type sesquiterpene (2), confertin (3) and scopoletin (4) was carried out with high throughout mechanism-based assay. These compounds were isolated from Hypochaeris radicata L., an Asteraceae family member. The pure compounds were screened for their urease and carbonic anhydrase inhibitory activities. The ethyl acetate fractions were subjected to column chromatography, which resulted in the isolation and purification of four compounds (1–4). On evaluation, compounds (1–4) exhibited selective activity against urease enzyme with an IC50 value of 180.11 ± 2.00, 27.18 ± 0.80, 24.12 ± 0.2 and 30.12 ± 1.10 µM respectively. The compounds (1–4) were found to be inactive against carbonic anhydrase enzyme. Thiourea was used as standard inhibitor (21 ± 0.14 µM) of urease enzyme.  相似文献   

6.
Three new lycopodium alkaloids, huperserramines A–C ( 1 – 3 , resp.), along with 15 known ones, lycopodine‐6α,11α‐diol ( 4 ), lycoposerramine H ( 5 ), lycoposerramine I ( 6 ), lycopodine‐6α‐ol ( 7 ), lycoposerramine M ( 8 ), diphaladine A ( 9 ), lycoposerramine K ( 10 ), lycoposerramine W ( 11 ), huperzine M ( 12 ), luciduline ( 13 ), phlegmariuine N ( 14 ), huperzine A ( 15 ), huperzine B ( 16 ), lycodine ( 17 ), and lycoposerramine R ( 18 ), were isolated from the whole plant of Huperzia serrata. Their structures were established by spectroscopic methods, including 2D‐NMR and MS analyses. All the isolates were evaluated for their inhibitory effects on acetylcholinesterase (AChE) and α‐glucosidase. As a result, lycopodine‐6α,11α‐diol ( 4 ) exhibited more potent α‐glucosidase inhibitory activity (IC50 148±5.5 μM ) than the positive control acarbose (IC50 376.3±2.7 μM ).  相似文献   

7.
Two ruthenium complexes containing a new phenanthroline-based ligand pai (pai = 2-(5-(1, 10- phenanthroline))-1H-acenaphtho[1′,2′:4,5]imidazole) were synthesized and characterized. Two ruthenium complexes were found to cleave DNA under irradiation, interact with CT-DNA by intercalation. Furthermore, DNA topoisomerase inhibition experiments indicated that complex 2 exhibited higher topoisomerase I inhibition activity (IC50 = 10 μM) than complex 1 (IC50 = 40 μM). Molecular modeling studies revealed that complex 2 stabilized Top1cc complex via π-π interaction and the formation of hydrogen bond. The cytotoxicity of complexes 1 and 2 against Eca-109 and A549 cells was also evaluate by MTT method, indicating that complex 2 exhibited good anticancer activity against Eca-109 cells (IC50 = 17.23 ± 0.22 μM), but two ruthenium complexes displayed weak anticancer activity against A549 cells.  相似文献   

8.
Six new complexes of copper(II) coordinated with O,N,O-tridentate Schiff base dianions were synthesized and structurally characterized. The solid-state structures of 16 contain four-coordinate mononuclear copper(II) units with a slightly distorted square planar geometry. Complexes 1 and 4 derived from d-tyrosine have an infinite 1-D, right-handed helical chain, while 5 derived from l-tyrosine has an infinite 1-D, left-handed helical chain. Inhibitions of jack bean urease by 16 have been investigated, and potent inhibitory activities with IC50 range of 2.15 ± 0.11–32.12 ± 0.65 μM have been observed for these copper(II) complexes. A docking analysis using a DOCK program was conducted to position 4 into the jack bean urease active site to determine the probable binding conformation.  相似文献   

9.
2-Hydroxy salicylhydrazide isatin hydrazone (L) and its Mn (II), Co (II), Ni (II), Cu (II), and Zn (II), metal complexes were synthesized. 1H NMR, UV–Vis, IR spectroscopy and elemental (CHN/S) analysis techniques were applied for characterization. TG/DTA techniques revealed that all the synthetic compounds are thermally stable up to 300 °C. They were found non-electrolytes in nature. Furthermore, all these complexes were evaluated for antiglycation and DPPH radical scavenging activities. They showed varying degree of activity with IC50 values between 168.23 and 269.0 μM in antiglycation and 29.63–57.71 μM in DPPH radical scavenging activity. Mn (II), Co (II), Ni (II), Cu (II), and Zn (II), metal complexes showed good antiglycation as well as DPPH radical scavenging activity. The IC50 values for antiglycation activity are 168.23 ± 2.37, 234.27 ± 4.33, 257.1 ± 6.43, 267.7 ± 8.43, 269.0 ± 8.56 Ni for Co, Zn, Mn, Cu, and Ni complexes, respectively, while IC50 value were found to be 29.63 ± 2.76, 31.13 ± 1.41, 35.16 ± 2.45, 43.53 ± 3.12, 57.71 ± 2.61 μM for Cu, Zn, Mn, Co and Ni complexes, respectively, for DPPH radical scavenging activity. These synthesized metal complexes were found to be better active than standards Rutin (IC50 = 294.46 μM) for anti-glycation, and tert-butyl-4-hydroxyanisole (IC50 = 44.7 μM) for DPPH radical scavenging activity.  相似文献   

10.
Benzoylquinazolinone derivatives 3a–n were synthesized via a simple one-step reaction, and evaluated for in vitro α-glucosidase inhibitory activity. Compounds 3d , 3f–g , 3i , and 3m–n showed more inhibitory activity than standard drug acarbose (IC50 = 750.0 ± 1.5 μM), and among them, compound 3d displayed the highest α-glucosidase inhibitory activity (IC50 = 261.6 ± 0.1 μM). The kinetic analysis of the compound 3d revealed that this compound inhibited α-glucosidase in a competitive manner (Ki = 255 μM). The docking studies were applied to predict binding modes of the synthesized compounds in active site of α-glucosidase.  相似文献   

11.
A new series of 1,3-benzoxazol-2(3H)-one hybrid compounds, including coumarin, isatin 1,3,4-triazole and 1,3,4-thiadiazole moieties, were synthesized and biologically evaluated for their antioxidant capacities and anti-urease properties. The synthesized benzoxazole-coumarin ( 6a–e ) and benzoxazole-isatin ( 10a–c ) hybrids showed remarkable urease inhibitory activities with IC50 (μM), ranging from 0.0306 ± 0.0030 to 0.0402 ± 0.0030, while IC50 of standard thiourea is 0.5027 ± 0.0293. The synthesized benzoxazole-triazole ( 8a–c ) and benzoxazole-thiadiazole ( 9a–c ) hybrids showed similar urease inhibitory activities with IC50 (μM), ranging from 0.3861 ± 0.0379 to 0.5126 ± 0.0345. The antioxidant activity of the synthesized compounds was evaluated for their antioxidant activities, such as reducing power and ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt) radical scavenging. The results of ABTS radical scavenging activities of some of the synthesized molecules showed higher activities than standard Trolox, SC50 (μM) = 213.04 ± 18.12. One benzoxazole-coumarin ( 6f ), two benzoxazole-isothiocyanate ( 7b, 7c ), and two benzoxazole-triazole ( 8b, 8c ) derivatives showed higher activities (SC50 (μM) values, 82.07 ± 10.34, 120.19 ± 7.30, 104.58 ± 10.55, 153.26 ± 7.14, and 144.82 ± 10.68, respectively) than standard Trolox, (SC50 (μM) = 213.04 ± 18.12).  相似文献   

12.
Many heterocycles have been developed as drugs due to their capacity to interact productively with biological systems. The present study aimed to synthesize cocrystals of the heterocyclic antitubercular agent pyrazinamide ( PYZ , 1 , BCS III) and the commercially available anticonvulsant drug carbamazepine ( CBZ , 2 , BCS class II) to study the effect of cocrystallization on the stability and biological activities of these drugs. Two new cocrystals, namely, pyrazinamide–homophthalic acid (1/1) ( PYZ:HMA , 3 ) and carbamazepine–5-chlorosalicylic acid (1/1) ( CBZ:5-SA , 4 ), were synthesized. The single-crystal X-ray diffraction-based structure of carbamazepine–trans-cinnamic acid (1/1) ( CBZ:TCA , 5 ) was also studied for the first time, along with the known cocrystal carbamazepine–nicotinamide (1/1) ( CBZ:NA , 6 ). From a combination drug perspective, these are interesting pharmaceutical cocrystals to overcome the known side effects of PYZ ( 1 ) therapy, and the poor biopharmaceutical properties of CBZ ( 2 ). The purity and homogeneity of all the synthesized cocrystals were confirmed by single-crystal X-ray diffraction, powder X-ray diffraction and FT–IR analysis, followed by thermal stability studies based on differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Detailed intermolecular interactions and the role of hydrogen bonding towards crystal stability were evaluated quantitatively via Hirshfeld surface analysis. The solubility of CBZ at pH 6.8 and 7.4 in 0.1 N HCl and H2O were compared with the values of cocrystal CBZ:5-SA ( 4 ). The solubility of CBZ:5-SA was found to be significantly improved at pH 6.8 and 7.4 in H2O. All the synthesized cocrystals 3 – 6 exhibited a potent urease inhibition (IC50 values range from 17.32 ± 0.89 to 12.3 ± 0.8 µM), several times more potent than standard acetohydroxamic acid (IC50 = 20.34 ± 0.43 µM). PYZ:HMA ( 3 ) also exhibited potent larvicidal activity against Aedes aegypti. Among the synthesized cocrystals, PYZ:HMA ( 3 ) and CBZ:TCA ( 5 ) were found to possess antileishmanial activity against the miltefosine-induced resistant strain of Leishmania major, with IC50 values of 111.98 ± 0.99 and 111.90 ± 1.44 µM, respectively, in comparison with miltefosine (IC50 = 169.55 ± 0.20 µM).  相似文献   

13.
This work has described the synthesis of novel class (125) of benzofuran based hydrazone. The hybrid scaffolds (125) of benzofuran based hydrazone were evaluated in vitro, for their urease inhibition. All the newly synthesized analogues (125) were found to illustrate moderate to good urease inhibitory profile ranging from 0.20 ± 0.01 to 36.20 ± 0.70 µM. Among the series, compounds 22 (IC50 = 0.20 ± 0.01 µM), 5 (IC50 = 0.90 ± 0.01 µM), 23 (IC50 = 1.10 ± 0.01 µM) and 25 (IC50 = 1.60 ± 0.01 µM) were found to be the many folds more potent than thiourea as standard inhibitor (IC50 = 21.86 ± 0.40 µM). The elevated inhibitory profile of these analogues might be due to presence of dihydroxy and flouro groups at different position of phenyl ring B attached to hydrazone skeleton. These dihydroxy and fluoro groups bearing compounds have shown many folds better inhibitory profile through involvement of oxygen of dihydroxy groups in hydrogen bonding with active site of enzymes. Various types of spectroscopic techniques such as 1H-, 13C- NMR and HREI-MS spectroscopy were used to confirm the structure of all the newly developed compounds. To find SAR, molecular docking studies were performed to understand, the binding mode of potent inhibitors with active site of enzymes and results supported the experimental data.  相似文献   

14.
Ethanol extract of the aerial parts of Bergenia ligulata was subjected to solvent–solvent separation followed by various chromatographic techniques that lead to isolation of bergenine (1), p-hydroxybenzoyl bergenin (2), 11-O-galloylbergenin (3) and methyl gallate (4) as major constituents. Ethyl acetate fraction showed a dose-dependent urease inhibitory pattern with IC50 value of 54μg/mL. Structures of compounds 1 and 3 were established by XRD and 2, 4 by NMR. All these compounds were subjected to DPPH scavenging activity, reducing power assay and urease inhibitory activity. The EC50 7.45 ± 0.2 μg/mL and 5.39 ± 0.28 μg/mL values in terms of antioxidant and reducing power, respectively, were less for 3. Compounds 13 showed moderate to significant urease inhibitory potential with IC50 57.1 ± 0.7, IC50 48.4 ± 0.3 and 38.6 ± 1.5. Antioxidant activities and urease inhibitory potential were investigated and compound 3 was found to be the most active.  相似文献   

15.
In this research work a sulfonamide from tranexamic acid has been synthesized followed by its metal complexation. p‐Bromo benzene sulfonyl chloride was used to synthesize sulfonamide using eco‐friendly atmosphere. The sulfonamide prepared from tranexamic acid has been utilized for the preparation of metal complexes with various metals like Ni, Cu, Co, Mn, Pb, Cd, Cr, Fe, Sn, and Sr. All synthesized compounds were characterized by applying different spectral techniques such as Fourier‐transform infrared (FTIR), mass spectrometry, and X‐ray diffraction (XRD) analysis. The biological activities such as radical scavenging activity, enzyme inhibition, antifungal, antibacterial, and anticancer were performed. It was concluded from the results that compounds showed moderate to good activity. Cu complex of sulfonamide showed the highest antioxidant potential (87.69 ± 1.8% with IC50 137 ± 1.0 μg) while Cr complex depicted the highest activity against both enzymes; AChE (73.51 ± 1.7% with IC50 165 ± 1.1 μg) and BChE (70.05 ± 1.3% with IC50 152 ± 1.8 μg). Mn complex showed good results against six bacterial strains comparable with standard drug. Cr complex depicted highest anticancer activity against MCF7 and human corneal epithelial cell (HCEC) cell lines 45.73% and 25.40%, respectively. These results concluded that metal complexes of sulfonamide may be good induction in the future for medical purposes.  相似文献   

16.
A dicyanoamide-bridged polymeric copper(I/II) complex, [CuII(sal)(bipy)CuI(dca)2]n, was prepared by reaction of 5-methylchlorosalicylaldehyde (Hsal), 2,2′-bipyridine (bipy), sodium dicyanoamide (Nadca), and copper perchlorate in methanol. The complex was characterized by elemental analyses, infrared and electronic spectroscopy, and single-crystal X-ray determination. CuII has a square pyramidal coordination, and CuI has triangular coordination. The complex showed high urease inhibitory activity with IC50 value of 0.16 ± 0.23 μM.  相似文献   

17.
《中国化学会会志》2017,64(2):224-230
A series of fourteen 3,4‐dihydropyrimidine‐2‐thiones ( 3a–n ) were synthesized by a green protocol, and their structures were characterized by spectroanalytical data. The compounds were obtained in high yields by efficient annulation of mesityl oxide (4‐methylpent‐3‐en‐2‐one) with anilines in the presence of potassium thiocyanate. The reaction is essentially metal‐catalyst‐ and solvent‐free, as mesityl oxide itself is the solvent as well as the reactant. The compounds were tested for their ability to inhibit the lymphoid tyrosine phosphatase PTPN22, and 5 of the 14 compounds exhibited IC50 values in the mid‐micromolar range, with the most potent hit being the compound 3d , having a methoxy substituent at the 2‐position of the phenyl ring with an IC50 = 18 ± 1 μM, and second most potent compound ( 3c ) with an IC50 value of 45 ± 3 μM, having methyl substituents at both 2‐ and 4‐position of the phenyl ring.  相似文献   

18.
Abstract

Herein, we have designed various benzisoxazole acetamide derivatives with and without glycine spacer as DPP-IV inhibitors. Compounds 9a–d and 11a–e were synthesized and screened for their in vitro DPP-IV inhibition. Compounds 11a and 11c showed moderate activity for DPP-IV inhibition, whereas other remained inactive at 25–200?µM concentrations. DPP-IV inhibition can be a good strategy for modulating diabetes and cancer; hence, we have screened compounds 9a–d and 11a–e for their anticancer activity using MTT assay against A549 and MCF7 cell lines. Compounds 9a–d without glycine spacer have shown good anticancer activity compared to compounds 11a–e with glycine spacer. Compound 9b has shown moderate activity with IC50 values 4.72?±?0.72 and 4.39?±?0.809?µM against A549 and MCF7 cell lines, respectively. Interestingly, compound 9c with cyano group has shown very good anticancer activity with IC50 2.36?±?0.34?µM against MCF7 cell line as compared to fluorouracil with IC50 45.04?±?1.02?µM.  相似文献   

19.
The molecular modelling approach was applied to a series of nineteen curcumin analogues to find the possible PfRIO2 kinase inhibitory action. A putative active site in flexible loop (S1) of PfRIO2 kinase was explored computationally to recognize the molecular basis of ligands binding. The ligands (curcumin analogues; 3a–3s) were well accommodated in the selected active site (S1) due to their higher molecular size and length. Further all these synthesized compounds (3a–3s) were evaluated for their in vitro antimalarial activity according to the reported method. The antimalarial data showed that all these compounds to have parasiticidal activity with minimum killing concentrations (MKCs) range between 3.87 and 25.35 μM and schizonticidal activity with IC50 range between 1.48 and 23.09 μM. The compound 3p showed the most significant result with maximum schizonticidal (IC50; 1.48 ± 0.10 μM) and parasiticidal activities (MKC; 3.87 ± 0.36 μM) could be identified as promising lead for further investigations.  相似文献   

20.
Shenqi Jiangtang Granule, a well‐known traditional Chinese herbal preparation, has been widely used for the treatment of type II diabetes mellitus. In this work, an ultrafiltration liquid chromatography with quadrupole time‐of‐flight mass spectrometry method was proposed for the rapid identification of bioactive ingredients from Shenqi Jiangtang Granule using α‐glucosidase as an example. First, the chemical profile of this preparation was clarified, including 37 saponins, 17 flavonoids, 37 lignans, and seven other compounds. After incubation with α‐glucosidase in vitro, the methanol extract with an IC50 value of 0.19 mg/mL exhibited significant inhibitory activity. Then, 18 specific binding peaks were screened, and 15 peaks were identified. Among these, ten compounds were reported to have potential α‐glucosidase inhibitory activity for the first time. Subsequently, the inhibitory activities of these active compounds were evaluated by ultraviolet spectrophotometry with p‐nitrophenyl α‐d‐ glucopyranoside as a substrate. As a result, gomisin J and gomisin D exhibited stronger α‐glucosidase inhibitory activities than other active compounds with IC50 values of 77.69 and 133.85 μM, respectively. The results demonstrated that the integrated ultrafiltration liquid chromatography with mass spectrometry method was an effective and powerful tool for the discovery of active ingredients in Shenqi Jiangtang Granule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号