首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A typical railway crew scheduling problem consists of two phases: a crew pairing problem to determine a set of crew duties and a crew rostering problem. The crew rostering problem aims to find a set of rosters that forms workforce assignment of crew duties and rest periods satisfying several working regulations. In this paper, we present a two-level decomposition approach to solve railway crew rostering problem with the objective of fair working condition. To reduce computational efforts, the original problem is decomposed into the upper-level master problem and the lower-level subproblem. The subproblem can be further decomposed into several subproblems for each roster. These problems are iteratively solved by incorporating cuts into the master problem. We show that the relaxed problem of the master problem can be formulated as a uniform parallel machine scheduling problem to minimize makespan, which is NP-hard. An efficient branch-and-bound algorithm is applied to solve the master problem. Effective valid cuts are developed to reduce feasible search space to tighten the duality gap. Using data provided by the railway company, we demonstrate the effectiveness of the proposed method compared with that of constraint programming techniques for large-scale problems through computational experiments.  相似文献   

2.
This paper discusses a decision support system for airline and railway crew planning. The system is a state-of-the-art branch-and-price solver that is used for crew scheduling and crew rostering. Since it is far from trivial to build such a system from the information provided in the existing literature, technical issues about the system and its implementation are covered in more detail. We also discuss several applications. In particular, we focus on a specific aircrew rostering application. The computational results contain an interesting comparison of results obtained with the approach in which crew scheduling is carried out before crew rostering, and an approach in which these two planning problems are solved in an integrated manner.  相似文献   

3.
Airline crew scheduling problem is a complex and difficult problem faced by all airline companies.To tackle this problem, it was often decomposed into two subproblems solved successively. First, the airline crew-pairing problem, which consists on finding a set of trips – called pairings – i.e. sequences of flights, starting and ending at a crew base, that cover all the flights planned for a given period of time. Secondly, the airline crew rostering problem, which consists on assigning the pairings found by solving the first subproblem, to the named airline crew members. For both problems, several rules and regulations must be respected and costs minimized.It is sure that this decomposition provides a convenient tool to handle the numerous and complex restrictions, but it lacks, however, of a global treatment of the problem. For this purpose, in this study we took the challenge of proposing a new way to solve both subproblems simultaneously. The proposed approach is based on a hybrid genetic algorithm. In fact, three heuristics are developed here to tackle the restriction rules within the GA’s process.  相似文献   

4.
Train crew management involves the development of a duty timetable for each of the drivers (crew) to cover a given train timetable in a rail transport organization. This duty timetable is spread over a certain period, known as the roster planning horizon. Train crew management may arise either from the planning stage, when the total number of crew and crew distributions are to be determined, or from the operating stage when the number of crew at each depot is known as input data. In this paper, we are interested in train crew management in the planning stage. In the literature, train crew management is decomposed into two stages: crew scheduling and crew rostering which are solved sequentially. We propose an integrated optimization model to solve both crew scheduling and crew rostering. The model enables us to generate either cyclic rosters or non-cyclic rosters. Numerical experiments are carried out over data sets arising from a practical application.  相似文献   

5.
The railway crew scheduling problem consists of generating crew duties to operate trains at minimal cost, while meeting all work regulations and operational requirements. Typically, a railway operation uses tens of thousands of train movements (trips) and requires thousands of crew members to be assigned to these trips. Despite the large size of the problem, crew schedules need to be generated in short time, because large parts of the train schedule are not finalized until few days before operation.  相似文献   

6.
The integrated vehicle-crew-roster problem with days-off pattern aims to simultaneously determine minimum cost vehicle and daily crew schedules that cover all timetabled trips and a minimum cost roster covering all daily crew duties according to a pre-defined days-off pattern. This problem is formulated as a new integer linear programming model and is solved by a heuristic approach based on Benders decomposition that iterates between the solution of an integrated vehicle-crew scheduling problem and the solution of a rostering problem. Computational experience with data from two bus companies in Portugal and data from benchmark vehicle scheduling instances shows the ability of the approach for producing a variety of solutions within reasonable computing times as well as the advantages of integrating the three problems.  相似文献   

7.
The crew scheduling problem in the airline industry is extensively investigated in the operations research literature since efficient crew employment can drastically reduce operational costs of airline companies. Given the flight schedule of an airline company, crew scheduling is the process of assigning all necessary crew members in such a way that the airline is able to operate all its flights and constructing a roster line for each employee minimizing the corresponding overall cost for personnel. In this paper, we present a scatter search algorithm for the airline crew rostering problem. The objective is to assign a personalized roster to each crew member minimizing the overall operational costs while ensuring the social quality of the schedule. We combine different complementary meta-heuristic crew scheduling combination and improvement principles. Detailed computational experiments in a real-life problem environment are presented investigating all characteristics of the procedure. Moreover, we compare the proposed scatter search algorithm with optimal solutions obtained by an exact branch-and-price procedure and a steepest descent variable neighbourhood search.  相似文献   

8.
9.
The airline industry is faced with some of the largest scheduling problems of any industry. The crew scheduling problem involves the optimal allocation of crews to flights. Over the last two decades the magnitude and complexity of crew scheduling problems have grown enormously and airlines are relying more on automated mathematical procedures as a practical necessity. In this paper we survey different approaches studied and discuss the state-of-the-art in solution methodology for the airline crew scheduling problem. We conclude with a discussion about promising areas for further work to make it possible to get very good solutions for the crew scheduling problem.  相似文献   

10.
The crew rostering problem in public bus transit aims at constructing personalized monthly schedules for all drivers. This problem is often formulated as a multi-objective optimization problem, since it considers the interests of both the management of bus companies and the drivers. Therefore, this paper attempts to solve the multi-objective crew rostering problem with the weighted sum of all objectives using ant colony optimization, simulated annealing, and tabu search methods. To the best of our knowledge, this is the first paper that attempts to solve the personalized crew rostering problem in public transit using different metaheuristics, especially the ant colony optimization. The developed algorithms are tested on numerical real-world instances, and the results are compared with ones solved by commercial solvers.  相似文献   

11.
In this paper, we present and evaluate a neural network model for solving a typical personnel-scheduling problem, i.e. an airport ground staff rostering problem. Personnel scheduling problems are widely found in servicing and manufacturing industries. The inherent complexity of personnel scheduling problems has normally resulted in the development of integer programming-based models and various heuristic solution procedures. The neural network approach has been admitted as a promising alternative to solving a variety of combinatorial optimization problems. While few works relate neural network to applications of personnel scheduling problems, there is great theoretical and practical value in exploring the potential of this area. In this paper, we introduce a neural network model following a relatively new modeling approach to solve a real rostering case. We show how to convert a mixed integer programming formulation to a neural network model. We also provide the experiment results comparing the neural network method with three popular heuristics, i.e. simulated annealing, Tabu search and genetic algorithm. The computational study reveals some potential of neural networks in solving personnel scheduling problems.  相似文献   

12.
13.
In the fractional ownership model, the partial owner of an aircraft is entitled to certain flight hours per year, and the management company is responsible for all the operational considerations of the aircraft and for making an aircraft available to the owner at the requested time and place. In the recent years although the industry as a whole has experienced significant growth, most of the major fractional jet management companies have been unprofitable. To increase profitability a management company must minimize its operating costs and increase its crew and aircraft utilization. In this paper, we present a methodology for efficiently scheduling the available resources of a fractional jet management company that takes into consideration the details in real world situations. We then discuss several strategic planning issues, including aircraft maintenance, crew swapping, demand increase and differentiation, and analyze their effects on the resource utilization and profitability.  相似文献   

14.
The integrated crew scheduling (ICS) problem consists of determining, for a set of available crew members, least-cost schedules that cover all flights and respect various safety and collective agreement rules. A schedule is a sequence of pairings interspersed by rest periods that may contain days off. A pairing is a sequence of flights, connections, and rests starting and ending at the same crew base. Given its high complexity, the ICS problem has been traditionally tackled using a sequential two-stage approach, where a crew pairing problem is solved in the first stage and a crew assignment problem in the second stage. Recently, Saddoune et al. (2010b) developed a model and a column generation/dynamic constraint aggregation method for solving the ICS problem in one stage. Their computational results showed that the integrated approach can yield significant savings in total cost and number of schedules, but requires much higher computational times than the sequential approach. In this paper, we enhance this method to obtain lower computational times. In fact, we develop a bi-dynamic constraint aggregation method that exploits a neighborhood structure when generating columns (schedules) in the column generation method. On a set of seven instances derived from real-world flight schedules, this method allows to reduce the computational times by an average factor of 2.3, while improving the quality of the computed solutions.  相似文献   

15.
This paper is concerned with the problem of nurse rostering within hospitals. We analyse a class of four benchmark instances from the nurse rostering literature to provide insight into the nature of the problem. By highlighting the structure of the problem we are able to reduce the relevant solution space. A mixed integer linear programme is then able to find optimal solutions to all four instances of this class of benchmark problems, each within half an hour. Our second contribution is to extend current mathematical approaches to nurse rostering to take better account of the practical considerations. We provide a methodology for handling rostering constraints and preferences arising from the continuity from one scheduling period to the next.  相似文献   

16.
In the context of manpower planning, goal programming (GP) is extremely useful for generating shift duties of fixed length. A fixed-length duty consists of a fixed number of contiguous hours of work in a day, with a meal/rest break somewhere preferably around the middle of these working hours. It is such properties that enable the straightforward, yet flexible GP modeling. We propose GP models for an integrated problem of crew duties assignment, for baggage services section staff at the Hong Kong International Airport. The problem is solved via decomposition into its duties generating phase—a GP planner, followed by its GP scheduling and rostering phase. The results can be adopted as a good crew schedule in the sense that it is both feasible, satisfying various work conditions, and “optimal” in minimizing idle shifts.  相似文献   

17.
Algorithms for the Set Covering Problem   总被引:10,自引:0,他引:10  
The Set Covering Problem (SCP) is a main model for several important applications, including crew scheduling in railway and mass-transit companies. In this survey, we focus our attention on the most recent and effective algorithms for SCP, considering both heuristic and exact approaches, outlining their main characteristics and presenting an experimental comparison on the test-bed instances of Beasley's OR Library.  相似文献   

18.
We present a general modeling approach to crew rostering and its application to computer-assisted generation of rotation-based rosters (or rotas) at the London Underground. Our goals were flexibility, speed, and optimality, and our approach is unique in that it achieves all three. Flexibility was important because requirements at the Underground are evolving and because specialized approaches in the literature did not meet our flexibility-implied need to use standard solvers. We decompose crew rostering into stages that can each be solved with a standard commercial MILP solver. Using a 167 MHz Sun UltraSparc 1 and CPLEX 4.0 MILP solver, we obtained high-quality rosters in runtimes ranging from a few seconds to a few minutes within 2% of optimality. Input data were takes from different depots with crew sizes ranging from 30–150 drivers, i.e., with number of duties ranging from about 200–1000. Using an argument based on decomposition and aggregation, we prove the optimality of our approach for the overall crew rostering problem.  相似文献   

19.
This paper presents a computationally effective heuristic method which produces good-quality solutions for large-scale set covering problems with thousands of constraints and about one million variables. The need to solve such large-scale problems arises from a crew scheduling problem of mass transit agencies where the number of work shifts required has to be minimized. This problem may be formulated as a large-scale non-unicost set covering problem whose rows are trips to be performed while columns stand for round trips. The proposed method is mainly based on lagragian relaxation and sub-gradient optimization. After the reduction of the number of rows and columns by the logical tests, “greedy” heuristic algorithms provide upper and lower bounds which are continuously improved to produce goodquality solutions. Computational results, regarding randomly generated problems and real life problems concerning crew scheduling at Italian Railways Company, show that good-quality solutions can be obtained at an acceptable computational cost. This work was supported by the project “Progetto Finalizzato Transporti 2” of National Research Council of Italy (C.N.R.) contract No. 94.01436PF74 and by “Ferrovie dello Stato S.p.A.”  相似文献   

20.
Operations management of subway systems is associated with combinatorial optimization problems (i.e. crew and train scheduling and rostering) which belong to the np-hard class of problems. Therefore, they are generally solved heuristically in real situations. This paper considers the problem of duty generation, i.e. identifying an optimal trips set that the conductors should complete in one workday. With regard to operational and labor conditions, the problem is to use the lowest possible number of conductors and minimize total idle time between trips. The problem is modeled and solved using a constructive hybrid approach, which has the advantage of visualizing a solution construction similar to the manual approach typically used. Our approach takes advantage of the benefits offered by evolutionary methods, which store a candidate solutions population in each stage, thus controlling the combinatorial explosion of possible solutions. The results thus obtained for problems similar to those that are solved manually in the Santiago Metro System were compared with two alternative approaches, based on tabu search and a greedy method. The hybrid method produced solutions with the minimum number of duties in six of the ten problems solved. However, the tabu search method provided better results in terms of idle time than either the hybrid method or the greedy method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号