首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Silica is a highly attractive support material for protein immobilization in a wide range of biotechnological and biomedical-analytical applications. Without suitable derivatization, however, the silica surface is not generally usable for attachment of proteins. We show here that Z(basic2) (a three α-helix bundle mini-protein of 7 kDa size that exposes clustered positive charges from multiple arginine residues on one side) functions as highly efficient silica binding module (SBM), allowing chimeras of target protein with SBM to become very tightly attached to underivatized glass at physiological pH conditions. We used two enzymes, d-amino acid oxidase and sucrose phosphorylase, to demonstrate direct immobilization of Z(basic2) protein from complex biological samples with extremely high selectivity. Immobilized enzymes displayed full biological activity, suggesting that their binding to the glass surface had occurred in a preferred orientation via the SBM. We also show that charge complementarity was the main principle of affinity between SBM and glass surface, and Z(basic2) proteins were bound in a very strong, yet fully reversible manner, presumably through multipoint noncovalent interactions. Z(basic2) proteins were immobilized on porous glass in a loading of 30 mg protein/g support or higher, showing that attachment via the SBM combines excellent binding selectivity with a technically useful binding capacity. Therefore, Z(basic2) and silica constitute a fully orthogonal pair of binding module and insoluble support for oriented protein immobilization, and this opens up new opportunities for the application of silica-based materials in the development of supported heterogeneous biocatalysts.  相似文献   

2.
Silver nanoparticles (AgNPs), owing to the property of plasmon resonance light scattering (PRLS), can be used as a light scattering spectral probe for visually tracing and detecting target molecules. In this study, we investigated the adsorption features of proteins immobilized on glass slides for AgNPs, and found that the scattering light of AgNPs adsorbed on the surface of glass slides could be seen by naked eyes under the irradiation of a common white light-emitting diode (LED) torch. Hereby, we established a method for visually determining the least complete quantity of immobilization of proteins on glass slides. Supported by the National Natural Science Foundation of China (Grant No. 20425517)  相似文献   

3.
Fluorescent sensor array in a microfluidic chip   总被引:1,自引:0,他引:1  
Miniaturization and automation are highly important issues for the development of high-throughput processes. The area of micro total analysis systems (muTAS) is growing rapidly and the design of new schemes which are suitable for miniaturized analytical devices is of great importance. In this paper we report the immobilization of self-assembled monolayers (SAMs) with metal ion sensing properties, on the walls of glass microchannels. The parallel combinatorial synthesis of sensing SAMs in individually addressable microchannels towards the generation of optical sensor arrays and sensing chips has been developed. [figure: see text] The advantages of microfluidic devices, surface chemistry, parallel synthesis, and combinatorial approaches have been merged to integrate a fluorescent chemical sensor array in a microfluidic chip. Specifically, five different fluorescent self-assembled monolayers have been created on the internal walls of glass microchannels confined in a microfluidic chip.  相似文献   

4.
Kim YE  Yi SY  Lee CS  Jung Y  Chung BH 《The Analyst》2012,137(2):386-392
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of immuno-captured target protein efficiently complements conventional immunoassays by offering rich molecular information such as protein isoforms or modifications. Direct immobilization of antibodies on MALDI solid support enables both target enrichment and MS analysis on the same plate, allowing simplified and potentially multiplexing protein MS analysis. Reliable on-chip immuno-MALDI-TOF MS for multiple biomarkers requires successful adaptation of antibody array biochips, which also must accommodate consistent reaction conditions on antibody arrays during immuno-capture and MS analysis. Here we developed a facile fabrication process of versatile antibody array biochips for reliable on-chip MALDI-TOF-MS analysis of multiple immuno-captured proteins. Hydrophilic gold arrays surrounded by super-hydrophobic surfaces were formed on a gold patterned biochip via spontaneous chemical or protein layer deposition. From antibody immobilization to MALDI matrix treatment, this hydrophilic/phobic pattern allowed highly consistent surface reactions on each gold spot. Various antibodies were immobilized on these gold spots both by covalent coupling or protein G binding. Four different protein markers were successfully analyzed on the present immuno-MALDI biochip from complex protein mixtures including serum samples. Tryptic digests of captured PSA protein were also effectively detected by on-chip MALDI-TOF-MS. Moreover, the present MALDI biochip can be directly applied to the SPR imaging system, by which antibody and subsequent antigen immobilization were successfully monitored.  相似文献   

5.
Several covalent immobilization methods, which have been routinely used with proteins and antibodies, were studied for their ability to immobilize genetically engineered Escherichia coli cells to glass beads. The cells used in this study expressed a metal binding peptide that binds cadmium (Cd) and mercury (Hg). The initial work focused on a method employing 2.5% aminopropyltrimethoxy silane and 2.5% glutaraldehyde for covalent immobilization of cells onto porous glass beads. Scanning electron microscopy (SEM) demonstrated cell attachment (average of 3.0×108 cells per bead) to the irregular surface. Columns containing cells immobilized with the 2.5% aminosilane and 2.5% glutaraldehyde removed more than 90% of the Cd from solutions with 50 ppb and 1 ppm levels. Following removal of the bound Cd with HCl elution and regeneration to pH 6.0, the columns were shown to effectively bind additional cadmium. Various concentrations of aminosilane and glutaraldehyde were tested for improved cell density.Glutaraldehyde is a universal and convenient cross-linker, but there are some concerns with its effects on the cells and proteins, therefore, two additional covalent techniques were examined. One method employed the aminopropyltrimethoxy silane and carbodiimide, and the other used mercaptopropyltrimethoxy silane and the heterobifunctional cross-linker GMBS. Some comparisons of these two immobilization methods to the method employing glutaraldehyde are described.  相似文献   

6.
C.A. Marquette  M. Cretich  M. Chiari 《Talanta》2007,71(3):1312-1318
A nanosize material composed of 330 nm glass beads coated with a copolymer of N,N-dimethylacrylamide (DMA), N,N-acryloyloxysuccinimide (NAS) and [3-(methacryloyl-oxy)propyl]trimethoxysilane (MAPS) was developed to improve the protein immobilization on biochips. The developed material, bearing rabbit-IgG proteins, was arrayed as 150 μm spots trapped at the surface of a poly(dimethylsiloxane) elastomer (PDMS), and compared to copoly(DMA-NAS-MAPS)-coated glass slides and latex beads based biochips. Evidences were made through scanning electron microscopy that the newly developed material based microarray exhibited surface irregularities at the submicron level leading to high specific area.The combination of such large immobilization area with the highly efficient protein immobilization of the copoly(DMA-NAS-MAPS) polymer, enabled the achievement of microarrays exhibiting good performances both in pure media and complex samples (human sera). Indeed, high specific/non-specific signal ratio was found using this optimized immobilization procedure.Chemiluminescent detection of anti-rabbit-IgG was obtained through peroxidase labeled antibodies in the 5 μg/l to 10 mg/l range. Application of the developed system to real samples was achieved for the detection of rheumatoid factor (RF) through a capture assay. Interesting results were obtained, with a RF detection over the 5.3-485 IU/ml range and without measurable matrix effect or non-specific signal.  相似文献   

7.
Cell detection based on protein array using modified glass slides   总被引:6,自引:0,他引:6  
Zhang CX  Liu HP  Tang ZM  He NY  Lu ZH 《Electrophoresis》2003,24(18):3279-3283
A protein array for cell detection was fabricated by spotting different antibodies on modified glass slides. Glass slides were modified to allow antibodies to be immobilized on it and to selectively bind antigens. Antibodies were specially selected with the cells to be detected as targets, which permitted target cells in samples to bind specifically to the array with little nonspecific binding. Results can be obtained by directly putting the samples onto the array for 1 h or a little longer to let the cells specifically interact with the antibodies. After washing the unbound samples away, images were observed with a microscope and captured with a CCD camera. The assessment of antibody-cell binding was evaluated by capturing red blood cells (RBCs) in human blood with blood group antibodies (anti-A and anti-B). Blood group antibodies were spotted on the modified glass slide and kept at 4<.deg> degrees C overnight for immobilization. Human blood samples diluted to different concentrations were used to examine the sensitivity and specificity of the method.  相似文献   

8.
Protein microarrays are promising tools that can potentially enable high throughput proteomic screening in areas such as disease diagnosis and drug discovery. A critical aspect in the development of protein microarrays is the optimization of the array's surface chemistry to achieve the high sensitivity required for detection of proteins in cell lysate and other complex biological mixtures. In the present study, a high-density antibody array with minimal nonspecific cellular protein adsorption was prepared using a glass surface coated with a poly(propyleneimine) dendrimer terminated with carboxyl group (PAMAM-COOH). The carboxyl-terminated dendrimer-modified surface has almost similar nonspecific cellular protein adsorption when compared to an inert PEG-modified surface. In addition, the multiple functional sites available for reaction on the dendrimer surface facilitated high-density immobilization of antibodies and efficient capture of bioanalytes. Various molecules were tested for their ability to block or deactivate the reactive carboxyl surface after antibody immobilization to further reduce the nonspecific binding. A short oligoethylene glycol (NH2-d4-PEG-COOH), was found to significantly improve the signal-to-noise ratio of the assay, resulting in higher sensitivity. The properties and functional qualities of the various surfaces were characterized by contact angle and AFM measurements. Nonspecific protein adsorption and protein immobilization as a function of dendrimer generations and sensitivity of antigen capturing from a buffer (1 pM) as well as from the complex cell lysate (10 pM) system were examined. Our detailed experimental studies demonstrated a facile method of preparing surfaces with high protein loading and low nonspecific protein binding for the development of high sensitivity protein microarrays.  相似文献   

9.
We report the microfluidic fabrication of robust and fluid tethered bilayer arrays within a poly(dimethylsiloxane) (PDMS) chip, and demonstrate its addressability and biosensing by incorporating the GM1 receptor into the bilayer framework for detection of cholera toxin. Rapid optimization of the experimental conditions is achieved by using nanoglassified surfaces in combination with surface plasmon resonance. The ultrathin glassy film on gold mimics glass surfaces employed in microfluidics, allowing real-time monitoring of multiple assembly steps and therefore permitting rapid prototyping of microfluidic arrays. The tethered bilayer array utilizes a covalently immobilized biotinylated protein for generation of well-defined capture zones where a streptavidin link is employed for the immobilization of biotinylated vesicles. Fusion of captured vesicles is accomplished using a concentrated PEG solution, and the lateral diffusion of the tethered bilayer membrane is characterized by fluorescence recovery after photobleaching methods. The tethered membrane arrays demonstrate marked stability and high mobility, which provide an ideal host environment for membrane-associated proteins and open new avenues for high-throughput analysis of these proteins.  相似文献   

10.
We present the cobalt(III)‐mediated interaction between polyhistidine (His)‐tagged proteins and nitrilotriacetic acid (NTA)‐modified surfaces as a general approach for a permanent, oriented, and specific protein immobilization. In this approach, we first form the well‐established Co2+‐mediated interaction between NTA and His‐tagged proteins and subsequently oxidize the Co2+ center in the complex to Co3+. Unlike conventionally used Ni2+‐ or Co2+‐mediated immobilization, the resulting Co3+‐mediated immobilization is resistant toward strong ligands, such as imidazole and ethylenediaminetetraacetic acid (EDTA), and washing off over time because of the high thermodynamic and kinetic stability of the Co3+ complex. This immobilization method is compatible with a wide variety of surface coatings, including silane self‐assembled monolayers (SAMs) on glass, thiol SAMs on gold surfaces, and supported lipid bilayers. Furthermore, once the cobalt center has been oxidized, it becomes inert toward reducing agents, specific and unspecific interactions, so that it can be used to orthogonally functionalize surfaces with multiple proteins. Overall, the large number of available His‐tagged proteins and materials with NTA groups make the Co3+‐mediated interaction an attractive and widely applicable platform for protein immobilization.  相似文献   

11.
We describe a straightforward approach to the covalent immobilization of cytophilic proteins by microcontact printing, which can be used to pattern cells on substrates. Cytophilic proteins are printed in micropatterns on reactive self-assembled monolayers by using imine chemistry. An aldehyde-terminated monolayer on glass or on gold was obtained by the reaction between an amino-terminated monolayer and terephthaldialdehyde. The aldehyde monolayer was employed as a substrate for the direct microcontact printing of bioengineered, collagen-like proteins by using an oxidized poly(dimethylsiloxane) (PDMS) stamp. After immobilization of the proteins into adhesive "islands", the remaining areas were blocked with amino-poly(ethylene glycol), which forms a layer that is resistant to cell adhesion. Human malignant carcinoma (HeLa) cells were seeded and incubated onto the patterned substrate. It was found that these cells adhere to and spread selectively on the protein islands, and avoid the poly(ethylene glycol) (PEG) zones. These findings illustrate the importance of microcontact printing as a method for positioning proteins at surfaces and demonstrate the scope of controlled surface chemistry to direct cell adhesion.  相似文献   

12.
蛋白质微阵列芯片技术及其在抗体筛选中的应用   总被引:3,自引:0,他引:3  
以兔IgG为模式蛋白质,对其在醛基修饰玻片表面的固定浓度、固定时间和温度等条件进行了优化,结果表明:在室温下,当固定蛋白质的浓度为1g/L、固定时间为4h时,可获得理想的蛋白质固定效果;蛋白质的定量检测范围为1μg/L~10mg/L。按优化的蛋白质微阵列芯片制作条件将规模化制备的抗体制作成抗体微阵列芯片,通过与荧光标记的人球蛋白和人白蛋白的相互作用,实现了对不同抗体株抗球蛋白和抗白蛋白活性的快速筛选与比较。  相似文献   

13.
Single-molecule force spectroscopy (SMFS) is powerful for studying folding states and mechanical properties of proteins, however, it requires protein immobilization onto force-transducing probes such as cantilevers or microbeads. A common immobilization method relies on coupling lysine residues to carboxylated surfaces using 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS). Because proteins typically contain many lysine groups, this strategy results in a heterogeneous distribution of tether positions. Genetically encoded peptide tags (e.g., ybbR) provide alternative chemistries for achieving site-specific immobilization, but thus far a direct comparison of site-specific vs. lysine-based immobilization strategies to assess effects on the observed mechanical properties was lacking. Here, we compared lysine- vs. ybbR-based protein immobilization in SMFS assays using several model polyprotein systems. Our results show that lysine-based immobilization results in significant signal deterioration for monomeric streptavidin-biotin interactions, and loss of the ability to correctly classify unfolding pathways in a multipathway Cohesin-Dockerin system. We developed a mixed immobilization approach where a site-specifically tethered ligand was used to probe surface-bound proteins immobilized through lysine groups, and found partial recovery of specific signals. The mixed immobilization approach represents a viable alternative for mechanical assays on in vivo-derived samples or other proteins of interest where genetically encoded tags are not feasible.  相似文献   

14.
A general approach was developed for the regio- and chemoselective covalent immobilization of soluble proteins on glass surfaces through an unnatural amino acid created by post-translationally modifying the cysteine residue in a CaaX recognition motif with functional groups suitable for "click" chemistry or a Staudinger ligation. Farnesyl diphosphate analogues bearing omega-azide or omega-alkyne moieties were attached to the cysteine residue in Cys-Val-Ile-Ala motifs at the C-termini of engineered versions of green fluorescent protein (GFP) and glutathione S-transferase (GST) by protein farnesyltransferase. The derivatized proteins were attached to glass slides bearing linkers containing azide ("click" chemistry) or phosphine (Staudinger ligation) groups. "Click"-immobilized proteins were detected by fluorescently labeled antibodies and remained attached to the slide through two cycles of stripping under stringent conditions at 80 degrees C. GFP immobilized by a Staudinger ligation was detected by directly imagining the GFP fluorophore over a period of 6 days. These methods for covalent immobilization of proteins should be generally applicable. CaaX recognition motifs can easily be appended to the C-terminus of a cloned protein by a simple modification of the corresponding gene, and virtually any soluble protein or peptide bearing a CaaX motif is a substrate for protein farnesyltransferase.  相似文献   

15.
A living cell has numerous proteins, only a few thousand of which have been identified to date. Cell-free protein synthesis is a useful and promising technique to discover and produce various proteins that might be beneficial for biotechnological, pharmaceutical, and medical applications. For this study, we evaluated the performance and the general applicability of our previously developed microreactor array chip to cell-free protein synthesis by comparisons with a commercially available system. The microreactor array chip comprises a temperature control chip made of glass and a disposable reaction chamber chip made of polydimethylsiloxane (PDMS). For evaluation of the microreactor array chip, rat adipose-type fatty acid binding protein, glyceraldehyde-3-phosphate dehydrogenase, cyclophilin, and firefly luciferase were synthesized from their respective DNA templates using a cell-free extract prepared from Escherichia coli. All these proteins were synthesized in the microreactor array chip, and their respective amounts and yields were investigated quantitatively.  相似文献   

16.
Prevention of biofilm growth on surfaces immersed in an aqueous environment could be obtained either by the release of an antifouling biocide or by the presence of such compounds on the surface. In this paper it is shown, for the first time, that an electrochemical treatment performed in the presence of chlorides and proteins allows the immobilization of an organic biocide (chloramine) on the electrode. This electrode is a stable transparent conductive tin dioxide film coated on glass. It is polarized to oxidize chloride ions into hypochlorous acid, which reacts with the organic matter (bovine serum albumin) present at the electrode/solution interface, leading on one hand to the chlorination of the proteins with in particular the chloramine formation and on the other hand to the protein aggregation on the surface.  相似文献   

17.
We have encapsulated several hemoproteins in the sol-gel glass to catalyze the oxidation reaction of dibenzothiophene (model for organic sulfur compounds in coal) with hydrogen peroxide. In addition to cytochrome c and myoglobin, which have previously been encapsulated in sol-gel glasses, two other hemoproteins, horseradish peroxidase and bovine blood hemoglobin, have now been successfully immobilized in sol-gel media with the retention of their spectroscopic properties. All four hemoproteins studied also demonstrate similar catalytic activities toward the oxidation of dibenzothiophene as compared with the results obtained with the proteins in solution. In the case of encapsulated cytochrome c, the more water-soluble S-oxide was obtained with much higher selectivity over the less water-soluble sulfone (S-oxide/sulfone = 7.1) as compared to what was obtained in the aqueous/organic medium (S-oxide/sulfone = 2.3). Because of the advantage of easy separation of the encapsulated proteins from the liquid reaction mixture, it is clear from these studies that the immobilization of active hemoproteins in the solid glass media could serve as more practical biocatalysts.  相似文献   

18.
We investigate the temperature dependence of interactions of β‐cyclodextrin (CD)/hexadecyltrimethylammonium bromide (CTAB) self‐assemblies with DNA during the decompaction of DNA/CTAB complexes. By combining direct imaging techniques with density and sound‐velocity measurements, we can explain the decompaction process and suggest a suitable model. The DNA‐decompaction process by using CDs is accompanied by interactions with surfaces, such as glass or mica. The mechanism of β‐CD/CTAB self‐assembly is elucidated and the immobilization of DNA onto negatively charged surfaces is explained. Differences between the fractal dimensions of DNA that is adsorbed onto the surfaces are related to strong and weak binding, which permit the partial relaxation of DNA on the surfaces. The β‐CD/CTAB self‐assembled monolayers are demonstrated to be a facile and efficient route for surface functionalization, which allows for the immobilization of biomacromolecules in close proximity without any intermediate binding or deprotection steps. Moreover, this route is expected to show several advantages that might contribute to improving the performance of future biosensors as gentle immobilization‐limiting alteration of the protein structure, oriented immobilization, thereby allowing homogeneous accessibility, reversible immobilization, thereby allowing reutilizations, and high compatibility with various types of biomacromolecules.  相似文献   

19.
Cyanogen bromide was used to convert pyridine rings in polymers to polyaldehyde. By reaction with NH2-containing substances, the rings are rebuilt, resulting in a pyridinium compound. Thus proteins and other NH2-containing substances can be covalently bound. This method provides a new means for a immobilization technique. Pyridine-gels based on polysaccharide and polyacrylamide matrices, as well as pyridine glass beads, were synthesized and used to study the conditions necessary for coupling. Trypsin and — chymotrypsin were used as test substances for immobilization of proteins. Some properties of the bound protein were studied and compared to native enzyme. Some general results on the applicability of these gels for affinity chromatography are also presented.  相似文献   

20.
Cell rolling is an important physiological and pathological process that is used to recruit specific cells in the bloodstream to a target tissue. This process may be exploited for biomedical applications to capture and separate specific cell types. One of the most commonly studied proteins that regulate cell rolling is P-selectin. By coating surfaces with this protein, biofunctional surfaces that induce cell rolling can be prepared. Although most immobilization methods have relied on physisorption, chemical immobilization has obvious advantages, including longer functional stability and better control over ligand density and orientation. Here we describe chemical methods to immobilize P-selectin covalently on glass substrates. The chemistry was categorized on the basis of the functional groups on modified glass substrates: amine, aldehyde, and epoxy. The prepared surfaces were first tested in a flow chamber by flowing microspheres functionalized with a cell surface carbohydrate (sialyl Lewis(x)) that binds to P-selectin. Adhesion bonds between P-selectin and sialyl Lewis(x) dissociate readily under shear forces, leading to cell rolling. P-selectin immobilized on the epoxy glass surfaces exhibited enhanced long-term stability of the function and better homogeneity as compared to that for surfaces prepared by other methods and physisorbed controls. The microsphere rolling results were confirmed in vitro with isolated human neutrophils. This work is essential for the future development of devices for isolating specific cell types based on cell rolling, which may be useful for hematologic cancers and certain metastatic cancer cells that are responsive to immobilized selectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号