首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The generalized self-consistent method is extended to the problems of statistical mechanics of composites with random elastic properties of inclusions. This approach makes it possible to reduce the problem of predicting the effective elastic properties of composites with random structures to a sequence of simpler homogenized boundary-value problems for solitary inclusions with inhomogeneous elastic transition layers in a homogeneous effective elastic medium and with the corresponding boundary conditions. The elastic properties of a solitary inclusion for the gth homogenized problem are found from the solutions of the gth and (g+1)th homogenized problems. The elastic properties and sizes of the transition layers account for the random distribution, random sizes, and random elastic properties of inclusions in the composite. A test problem of predicting the effective elastic properties of a transversely isotropic layer composite with random elastic properties of some layers is solved by using the method proposed. The solution obtained coincides with the known exact solution [1].Perm State Technical University, Perm, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 6, pp. 785–796, November–December, 1999.  相似文献   

2.
The feasibility of using a generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures has been examined. Using this method, the problem is reduced to solution of simpler special averaged problems for composites with single inclusions and corresponding transition layers in the medium examined. The dimensions of the transition layers are defined by correlation radii of the composite random structure of the composite, while the heterogeneous elastic properties of the transition layers take account of the probabilities for variation of the size and configuration of the inclusions using averaged special indicator functions. Results are given for a numerical calculation of the averaged indicator functions and analysis of the effect of the micropores in the matrix-fiber interface region on the effective elastic properties of unidirectional fiberglass—epoxy using the generalized self-consistent method and compared with experimental data and reported solutions.Perm State Technical University. Translated from Mekhanika Kompozitmykh Materialov, Vol. 33, No. 3, pp. 289–299, May–June, 1997.  相似文献   

3.
A new method is developed for the statistical mechanics of composite materials — the generalized selfadjustment method — which makes it possible to reduce the problem of predicting effective elastic properties of composites with random structures to the solution of two simpler “averaged” problems of an inclusion with transitional layers in a medium with the desired effective elastic properties. The inhomogeneous elastic properties and dimensions of the transitional layers take into account both the “approximate” order of mutual positioning, and also the variation in the dimensions and elastics properties of inclusions through appropriate special averaged indicator functions of the random structure of the composite. A numerical calculation of averaged indicator functions and effective elastic characteristics is performed by the generalized self-adjustment method for a unidirectional fiberglass on the basis of various models of actual random structures in the plane of isotropy.  相似文献   

4.
A new approach to the generalized self-consistent method [1,2] has been developed for problems of the statistical mechanics of composites with composite or hollow inclusions. The approach can reduce the problem of predicting the effective elastic properties of composites to a simpler averaged problem of a single, composite, or hollow inclusion with inhomogeneous elastic surrounding in a homogeneous effective elastic medium. The problem of predicting the effective elastic properties of composites with unidirectional hollow fibers or hollow spherical inclusions are studied by using the new approach.Submitted to the 10th International Conference on Mechanics of Composite Materials, April 20–23, 1998, Riga, Latvia.Perm' State Technical University, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 2, pp. 173–183, March–April, 1998.  相似文献   

5.
A new generalized self-consisrtent method is developed for the statistical mechanics of composites which makes it possible to reduce the problem of predicting the effective elastic properties of composites with random structures to solution of a simpler averaged problem of an inclusion with a transitional layer in a material with the effective elastic properties sought. The typical size of the transition layer is determined by the correlation radius of the random structure, and its elastic properties are considered as both the close order of the mutual position and the variation of inclusion dimensions in terms of a special averaged indicator function of the structure. A numerical calculation is presented by the generalized self-consistent method for the average indicator function and the transversely-isotropic tensor for effective elastic properties of unidirectional boron fiber-reinforced plastic based on different models for actual random structure in the plane of isotropy. Analysis of the numerical results compared with experimental data and known solutions of other authors demonstrates the high accuracy of the generalized self-consistent method for a broad class of random composite structures.Perm State Mechanical University, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 32, No. 6, pp. 747–758, November–December, 1996.  相似文献   

6.
Analysis results for the elastic properties of a composite with a small amount of coplanarly arranged platelike filler particles are presented. The geometrical form of the particles is described by an oblate ellipsoid of revolution. The calculations are performed by formulas obtained by using the Eshelby approach for media with a low concentration of inclusions. The effect of anisometry of the ellipsoidal particles and of the ratio between the elastic moduli of the filler and matrix on the effective elastic constants of the composite is discussed. Calculation results are compared with experimental data for the elastic moduli of a nanocomposite containing completely exfoliated particles of an unmodified montmorillonite. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 44, No. 4, pp. 493–504, July–August, 2008.  相似文献   

7.
To efficiently calculate the effective properties of a composite, which consists of rigid spherical inclusions not necessarily of the same sizes in a homogeneous isotropic elastic matrix, a method based on the lubrication forces between neighbouring particles has been developed. The method is used to evaluate the effective Lamé moduli and the Poisson's ratio of the composite, for the particles in random configurations and in cubic lattices. A good agreement with experimental results given by Smith (1975) for particles in random configurations is observed, and also the numerical results on the effective moduli agree well with the results given by Nunan & Keller (1984) for particles in cubic lattices.  相似文献   

8.
A model of deformation of stochastic composites subjected to microdamage is developed for the case of orthotropic materials with microdamages accumulating in the fibers. The composite is treated as a matrix strengthened with elliptic fibers with orthotropic elastic properties. The fractured microvolumes are modeled by a system of randomly distributed quasi-spherical pores. The porosity balance equation and relations for determining the effective elastic moduli for the case of a fibrous composite with orthotropic components are used as the fundamental relations. The fracture criterion is given as a limit value of the intensity of average shear stresses occurring in the undamaged part of the material, which is assumed to be a random function of coordinates and is described by the Weibull distribution. Based on an analytical and numerical approach, the algorithm for determining the nonlinear deformation properties of such a material is constructed. The nonlinearity of composite deformations is caused by the accumulation of microdamages in the fibers. By using a numerical solution, the nonlinear stress–strain diagrams for an orthotropic composite in uniaxial tension are obtained. Translated from Mekhanika Kompozitnykh Materialov, Vol. 45, No. 1, pp. 17–30, January–February, 2009.  相似文献   

9.
A numerical method for predicting the deformational and strength characteristics of a calcite-quartzitic polymer concrete from the known properties of its components is developed based on the finite-element method. Components of the material are assumed elastic and isotropic, and the filler particles are modeled by round inclusions perfectly bonded to the polymer matrix. The size distribution of the inclusions correspond to that of actual fillers. The destruction process of the components is simulated by sequentially excluding the particles in which the maximum principal stress has achieved the ultimate value for this component. A comparison of calculated and experimental characteristics of the polymer concrete showed errors of 2–4% for the elastic modulus and about 10% for the ultimate strength if the finite-element cell included not less than 20–30 average-size particles and 2–5 large ones. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 42, No. 6, pp. 817–824, November–December, 2006  相似文献   

10.
A quasi-periodic model is developed for random structures of composites, when the locations of inclusions are given in terms of random deviations from nodes of an ideal periodic lattice. Solution of the stochastic boundary problem of the theory of elasticity is examined for a quasi-periodic component by the method of periodic components, which is reduced to determination of the field of deviations from the known solution for a corresponding periodic composite. The solution is presented for the tensor of effective elastic properties of a quasi-periodic composite in singular approximation of the method of periodic components in terms of familiar solutions for tensors of the effective elastic properties of composites with periodic and chaotic structures and the parameters of the quasi-periodic structure: the coefficient of periodicity and the tensor of the anisotropy of inclusion disorder. A numerical calculation is performed for the effective transversally isotropic elastic properties of unidirectional fibrous composites with different degrees of fiber disorder.Perm' State Technical University, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 33, No. 4, pp. 460–473, July–August, 1997.  相似文献   

11.
The self-consistent method is a microchemical model for predicting the effective elastic properties of an inclusion medium. A numerical method based on self-consistent theory, namely the self-consistent finite element method, is developed. This new method can be applied to finding the determination of the effective properties of multiphase media with arbitrarily shaped and anisotropic inclusions. Applications to fibre composites demonstrate the implementation and accuracy of the method. This method can be extended to the elastoplastic and finite deformation case.  相似文献   

12.
The study aims to predict the elastic and damping properties of composite laminated plates from measured dynamical characteristics. The elastic constants and damping properties of a laminated element are determined by using experimental data and the results of a multilevel theoretical approach. Solution examples for particular problems are given. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 44, No. 1, pp. 35–50, January–February, 2008.  相似文献   

13.
In the present paper, a model of deformation of stochastic composites under microdamaging is developed for the case of orthotropic composite, when the microdamages are accumulated in the matrix. The composite is treated as an isotropic matrix strengthened by three-axial ellipsoidal inclusions with orthotropic symmetry of elastic properties. It is assumed that the loading process leads to accumulation of damages in the matrix. Fractured microvolumes are modeled by a system of randomly distributed quasispherical pores. The porosity balance equation and relations for determining the effective elastic moduli for the case of a composite with orthotropic components are taken as the basic relations. The fracture criterion is assumed to be given as the limit value of the intensity of average shear stresses occurring in the undamaged part of the material. Based on the analytical and numerical approach, an algorithm for the determination of nonlinear deformation properties of such a material is constructed. The nonlinearity of composite deformations is caused by the accumulation of microdamages in the matrix. Using the numerical solution, nonlinear stress-strain diagrams for the orthotropic composite in the case of biaxial extension are obtained. Published in Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 51, No. 1, pp. 121–130, January–March, 2008.  相似文献   

14.
A new variant of the theory of creep of plastics with spherical inclusions or pores is proposed on the basis of approximate equations for the integral parameters and the Volterra principle. Rabotnov's theory of viscoelasticity is used to describe linear creep of the matrix. The remaining components of the composite are assumed to be elastic. The complete system of operator equations of the linear viscoelasticity of plastics with spherical inclusions is obtained on the basis of the hypothesis of elastic deformation of the composite and hydrostatic pressure. Sample calculations are performed. A. A. Blagonravov Institute of Mechanical Engineering, Russian Academy of Sciences, Moscow. Translated from Mekhanika Kompozitnykh Materialov, No. 5, pp. 668–675, September–October, 1996.  相似文献   

15.
A generalized self-consistent method is extended to particulate viscoelastic composites with elastomeric matrices and high volume fractions of elastic inclusions. It is shown that the effective bulk modulus of a composite coincides with the bulk modulus of particles. A quadratic operator equation is derived for an analog of the effective shear relaxation kernel. This equation is explicitly solved using the Laplace transform method. The influence of material and geometrical parameters of a composite on its effective viscoelastic moduli is analyzed numerically.  相似文献   

16.
A variant of determining the elastic characteristics of composites containing irregularly oriented shape-anisotropic filler particles of two types (short fibers and thin platelets) is considered. The effective elastic constants of the composites are calculated by using the method of orientational averaging of elastic characteristics of isolated transversely isotropic structural elements reinforced with unidirectionally oriented short fibers or coplanarly arranged thin platelets. The superposition of elastic properties of the irregularly oriented structural elements, with account of their orientational distribution in the composite material, is accepted. The calculation results are compared with experimental data for the effective elastic moduli of polymeric composites reinforced with short glass fibers and of polymeric nanocomposites containing the platelet-type particles of organically modified montmorillonite. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 42, No. 3, pp. 285–300, May–June, 2006.  相似文献   

17.
In the present work, a model of nonlinear deformation of stochastic composites under microdamaging is developed for the case of a composite with orthotropic inclusions, when microdefects are accumulated in the matrix. The composite is treated as an isotropic matrix strengthened by triaxial arbitrarily oriented ellipsoidal inclusions with orthotropic symmetry of the elastic properties. It is assumed that the process of loading leads to accumulation of damage in the matrix. Fractured microvolumes are modeled by a system of randomly distributed quasispherical pores. The porosity balance equation and relations for determining the effective elastic modules in the case of orthotropic components are taken as basic relations. The fracture criterion is specified as the limiting value of the intensity of average shear stresses acting in the intact part of the material. On the basis of the analytic and numerical approach, we propose an algorithm for the determination of nonlinear deformation properties of the investigated material. The nonlinearity of composite deformations is caused by the finiteness of deformations. By using the numerical solution, the nonlinear stress–strain diagrams are predicted and discussed for an orthotropic composite material for various cases of orientation of inclusions in the matrix.  相似文献   

18.
In this paper the method of conditional moments is developed for the case of a two–component matrix composite with randomly distributed unidirectional and arbitrarily oriented ellipsoidal inclusions. The algorithm for determination of the effective elastic properties of composites from the given elastic constants of the components and geometrical parameters and orientation of inclusions is discussed. It is assumed that the components of the composite show orthotropic symmetry of thermoelastic properties. As a numerical example arbolite (straw particle inclusions in a cement matrix) is considered. The dependencies of Young's moduli, Poisson's ratios and shear moduli from the concentration of inclusions and for certain orientations of the inclusions are predicted and discussed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The problem of the quasi-particle spectrum in a binary disordered alloy with a space-correlated random potential is considered. The extended space formalism is used to represent the average resolvent. To calculate the mass operator, some self-consistent approximation procedures are suggested that coincide with the well-known self-consistent approximations for α=0 (where α is the short-range order parameter). The elaborated theory ensures the correct passage to the Green's function of a perfect crystal in the limits α→1 and α→−1 for any concentration and 50% concentration, respectively. The approximations possess the correct analytic properties for all values of the parameter α. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 114, No. 2, pp. 296–313, February, 1998.  相似文献   

20.
A theoretical investigation was carried out to examine the possibilities of a structural approach to prediction of elastic constants, creep functions, and thermal properties of multiphase polymer composite materials filled with composite or hollow spherical Inclusions of several types. The problem of determining effective properties of the composite was solved by generalizing the effective medium method, a variant of the self-consistent method, for the case of a four-phase kernel-shell-matrix-equivalent homogeneous medium model. Exact analytical expressions for the bulk modulus thermal expansion coefficient, thermal conductivity coefficient, and specific heat were obtained. The solution for the shear modulus is given in the form of a nonlinear equation whose coefficients are the solution of a system of 12 linear equations.To be presented at the Ninth International Conference on the Mechanics of Composite Materials, Riga, October 1995.Published in Mekhanika Kompozitnykh Materialov, Vol. 31, No. 4, pp. 462–472, July–August, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号