首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of a concentrated external disturbance on the boundary layer of a plate was investigated in the framework of the reaction of boundary layers to external disturbances. A disturbance localized above the surface of the plate was introduced into the external flow. Measurements revealed the generation of Tollmien—Schlichting waves in the boundary layer; in conjunction with the results of the earlier studies [1, 2], this shows that a concentrated external disturbance is an effective means of generating characteristic oscillations in a boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 155–159, July–August, 1980.  相似文献   

2.
In the context of the problem of describing the transition of a laminar boundary layer to a turbulent, great interest attaches to the study of susceptibility, i.e., of the reaction of the flow to various external influences, such as acoustic perturbations, surface roughness, vibration of the wall, turbulence of the unperturbed flow, etc. A general property of the effect of the factors mentioned above on the flow in a laminar boundary layer was discovered in experimental and numerical studies and is noted in [1]: in all cases an external forcing perturbation leads to the excitation of normal modes of oscillation in the boundary layer which propagate downstream, namely, Tollmien-Schlichting waves. There is an analytical calculation in [2, 3] of the amplitude of a wave excited by harmonic oscillations of a narrow band on the surface of a plane plate, the Reynolds number having been assumed to be infinitely large, and the frequency of the vibrator corresponding to the neighborhood of the lower branch of the neutral cuirve [4], In [5] the amplitude of the wave of instability generated is calculated by the method of expansion of the solution in a biorthogonal system of eigenfunctions. The amplitudes of the Tollmien-Schlichting waves are calculated below by means of a generalization of the method of [2] for the whole range of Reynolds numbers and frequencies of the vibrator corresponding to the region of instability: for moderate Reynolds numbers the problem is solved numerically, while for large Reynolds numbers an asymptotic solution is constructed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 46–51, July–August, 1987.The author is grateful to M. N. Kogan and V. V. Mikhailov for useful discussions of the results of the study.  相似文献   

3.
本文探讨了一种新的激波-非定常边界层相互干扰现象,这种激波-边界层干扰现象既不同于定常激波-边界层干扰现象,又不同于激波在端面反射后与该激波所诱导的边界层之间的干扰现象,而是运动激波与稀疏波和第一激波所诱导的非这常边界层之间的干扰现象,本文对这种现象用微波动力学理论进行分析,并把这种干扰现象看成激波的绕射现象,同时在稀疏波破膜的双驱动激波管中进行实验观察,最后把理论分析与实验观察进行了比较。  相似文献   

4.
The flow formed in the neighborhood of the discontinuity intersection point when shock waves collide at a nonzero angle is studied. The investigation can be directly applied to problems of shock wave interaction in the interplanetary plasma [9–12]. In magnetohydrodynamics the nature of the flow and its investigation are much more complex than in gas dynamics because of the greater number of possible waves and governing parameters.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 132–143, May–June, 1991.  相似文献   

5.
6.
The results of the author's earlier investigation of the stability of a partially viscous shock layer indicate that any plane-parallel flow may be absolutely unstable if for that flow there exists more than one normal instability mode. This assumption has been confirmed for a supersonic boundary layer at infinitely large Reynolds numbers. Two types of absolute instability, corresponding to two known types of branching of the dispersion relation, have been detected.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 176–179, January–February, 1988.  相似文献   

7.
Similarity solutions of the equations of a laminar incompressible boundary layer, formed in a rotational external flow, are investigated. Such problems arise in the analysis of the flow in a boundary layer when there is an abrupt change in the boundary conditions (for example, in the case of a discrete inflation of the boundary layer, in hypersonic flow about blunt bodies, etc.). Various approaches to their solution have been proposed earlier in [1–4]. Solved below is the so-called inverse problem of boundary layer theory (see [3], p. 200), where the contour of the body that causes a given flow outside the boundary layer is unknown beforehand and is found during the course of solution of the problem in connection with the coupling of the longitudinal and transverse velocity components. The cases of a parabolic (ue ~ y2) and a linear (ue=a(x)+b(x)y) variation in the velocity of the external flow with distance along the transverse direction are considered in detail. The latter includes an investigation of the flow in the neighborhood of the critical point of a blunt body, taking account of the vorticity of the flow in the shock layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 78–83, March–April, 1971.  相似文献   

8.
The scattering of radio waves by meteorites moving in the atmosphere at hypersonic velocity is significantly changed by the formation of an ionized shock layer. The flow of the gas in the shock layer is characterized by ablation of the mass of the body and complicated chemical kinetics, which makes it difficult to calculate theoretically the signal scattered by the plasma and leads to the need for an experimental study of the phenomenon, particularly in ballistic ranges. The methods of head-on or inclined probing of ballistic models by microwave signals have been developed furthest. However, in the papers devoted to this question [1–3] very restricted information is given about the method employed and the experimental results, which hinders practical realization of the method. The present work was aimed at creating a method for measuring the backward scattering of radio waves by models moving at hypersonic velocity in a ballistic range. The results are also given of an investigation into the influence of the ionized gas on the amplitude of the reflected microwave signals.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 188–190, May–June, 1981.We thank V. V. Brodskii for helpful advice in discussing the arrangement of the experiment and G. V. Glybin for assistance in preparing the microwave equipment and the ballistic range.  相似文献   

9.
The study considers plane steady flow of an incompressible fluid around a circular cylinder rotating in a homogeneous free stream. On the basis of an asymptotic analysis of the Navier-Stokes equations for high Reynolds numbers, it is shown that at a certain value of the angular velocity of the cylinder an interaction arises between the flow in the boundary layer and the external potential flow. A solution is obtained numerically which describes the flow in the region of interaction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 36–45, September–November, 1987.  相似文献   

10.
Oil—soot visualization, drainage tests, and a special schlieren method were used in an investigation into the corner interaction of a normal shock wave and a boundary layer. The combined use of these methods made it possible to obtain a number of new qualitative results on the flow structure in the perturbed region.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 51–58, May–June, 1979.  相似文献   

11.
A Blasius laminar boundary layer and a steady turbulent boundary layer on a flat plate in an incompressible fluid are considered. The spectral characteristics of the Tollmien—Schlichting (TS) and Squire waves are numerically determined in a wide range of Reynolds numbers. Based on the spectral characteristics, relations determining the three–wave resonance of TS waves are studied. It is shown that the three–wave resonance is responsible for the appearance of a continuous low–frequency spectrum in the laminar region of the boundary layer. The spectral characteristics allow one to obtain quantities that enter the equations of dynamics of localized perturbations. By analogy with the laminar boundary layer, the three–wave resonance of TS waves in a turbulent boundary layer is considered.  相似文献   

12.
Gol'dfel'd  M. A. 《Fluid Dynamics》1985,20(5):728-734
An experimental study is made of the turbulent boundary layer in its interaction with a shock wave, the purpose being to clarify questions connected with the increase in the fullness of the velocity profiles. New systematic data are obtained on the development of the boundary layer, and its structure and asymptotic behavior beyond the interaction region. These results are for axisymmetric flow in the range of Mach numbers M=2–4 and angles of rotation of the flow 10–25°. Conditions of developed separation are included. Extensive information about the general properties of flows with separation has been obtained in a number of studies. A survey of these may be found, for example, in [1, 2]. Certain questions about the separation and reattachment of the boundary layer are clarified. The dimensions of the separation region are determined and its structure studied in detail for various shapes of the surface around which the flow takes place. Nevertheless it has not yet proved possible to reach a complete understanding of this complex phenomenon. Usually plane models have been used for the investigations, but in this case it is evidently impossible to exclude completely the influence of end effects on the flow in the interaction zone. Therefore it is preferable to study such flows in axisymmetric models; this considerably eases the task of analyzing and interpreting the results.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 75–82, September–October, 1985.  相似文献   

13.
The investigation of three-dimensional flows in boundary layers is important to determine the aerodynamic characteristics of wings such as the heat fluxes and friction drag. However, the circumstance that interaction of the boundary layer and the wake with an inviscid stream can play a governing role for the formation of the flow diagram as a whole is more important. The three-dimensional flow on a thin delta wing in a hypersonic stream is investigated in this paper. An important singularity of hypersonic flow is the low value of the gas density in the boundary layer as compared with the density on its outer boundary. It is shown that in the general case when the pressure in the wing span direction varies mainly by an order, high transverse velocities originate because of the smallness of the density within the boundary layer. This circumstance permits expansion of the solution for smallspan wings in a series in an appropriate small parameter. The equations in each approximation depend on two variables, while the third—longitudinal—variable enters as a parameter. The zero approximation can be considered as the formulation of the law of transverse plane sections for a three-dimensional boundary layer. As a comparison with the exact solutions calculated for delta wings with power-law distributions of the wing thickness has shown, the first approximation yields a very good approximation. Furthermore, flow modes with a different direction of parabolicity on the whole wing, as well as zones in which interaction with the external stream should absolutely be taken into account, are found.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 75–84, March–April, 1976.  相似文献   

14.
The article discusses solutions of the equations of the hypersonic boundary layer on an axisymmetric offset slender body (with a power exponent equal to 3/4), taking account of interactions with a nonviscous flow. It is shown that, in this case, the equations of the boundary layer have solutions differing from the self-similar solution corresponding to flow around a semi-infinite body. The solutions obtained are analogous to solutions for a strong interaction on a plate with slipping and triangular vanes [1–4], but are obtained over a wide range of values of the parameter of viscous interaction. An asymptotic solution is given to the problem with the approach to zero of the interaction parameter.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 41–47, September–October, 1973.The authors thank V. V. Mikhailova for discussion of the work and useful advice.  相似文献   

15.
The results of an experimental investigation of the three-dimensional stability of a boundary layer with a pressure gradient are presented. A low-turbulence subsonic wind tunnel was employed. The development of a three-dimensional wave packet of oscillations harmonic in time in the boundary layer on a model wing is studied. The amplitudephase distributions of the pulsations in the wave packet are subjected to a Fourier analysis. Spectral (with respect to the wave numbers) decomposition of the oscillations enables the flow stability with respect to plane waves with different directions of propagation to be examined. The results are compared with the corresponding data obtained in flat plate experiments. The effect of the pressure gradient on the development of the three-dimensional spectral components of the disturbances and the dispersion properties of the flow is analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 85–91, May–June, 1988.  相似文献   

16.
The two-dimensional flow of a viscous incompressible fluid near the leading edge of a slender airfoil is considered. An asymptotic theory of this flow is constructed on the basis of an analysis of the Navier—Stokes equations at large Reynolds numbers by means of matched asymptotic expansions. A central feature of the theory is the region of interaction of the boundary layer and the exterior inviscid flow; such a region appears on the surface of the airfoil in a definite range of angles of attack. The boundary-value problem for this region is reduced to an integrodifferential equation for the distribution of the friction. This equation has been solved numerically. As a result, closed separation regions are constructed, and the angle of attack at which separation occurs is found.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 42–51, January–February, 1981.I thank V. V. Sychev and Vik. V, Sychev for assistance.  相似文献   

17.
Self-similar solutions of the equations of a three-dimensional laminar boundary layer are of interest from two points of view. In the first place, they can be used to construct approximate calculating methods, making it possible to analyze several variants and to consider complex flows, in which it is impossible to neglect the interaction between the boundary layer and the external flow (for example, in the region of hypersonic interaction [1–3]). In the second place, the analysis of self-similar solutions permits clarifying the effect of individual parameters on one or another characteristic of the boundary layer and representing this effect in predictable form. One of the principal characteristics of a three-dimensional boundary layer, as also of a two-dimensional, is the coefficient of regeneration of the enthalpy. The value of this coefficient is needed for determining the temperature of a thermally insulated surface, as well as for finiing the real temperature (or enthalpy) head, which determines the value of the heat flux from a heated gas to the surface of the body around which the flow takes place. The article presents the results of calculations of the coefficient of regeneration of the enthalpy for locally self-similar solutions of the equations of a three-dimensional boundary layer, forming with flow around a cylindrical thermally insulated surface at an angle. It is clarified that the dependence of the coefficient of regeneration of the enthalpy on the determining parameters is not always continuous.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 60–63, January–February, 1973.  相似文献   

18.
In the framework of the locally self-similar approximation of the Navier-Stokes equations an investigation is made of the flow of homogeneous gas in a hypersonic viscous shock layer, including the transition region through the shock wave, on wings of infinite span with rounded leading edge. The neighborhood of the stagnation line is considered. The boundary conditions, which take into account blowing or suction of gas, are specified on the surface of the body and in the undisturbed flow. A method of numerical solution of the problem proposed by Gershbein and Kolesnikov [1] and generalized to the case of flow past wings at different angles of slip is used. A solution to the problem is found in a wide range of variation of the Reynolds numbers, the blowing (suction) parameter, and the angle of slip. Flow past wings with rounded leading edge at different angles of slip has been investigated earlier only in the framework of the boundary layer equations (see, for example, [2], which gives a brief review of early studies) or a hypersonic viscous shock layer [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 150–154, May–June, 1984.  相似文献   

19.
Transition prediction is of great importance for the design of long distance flying vehicles. It starts from the problem of receptivity, i.e., how external disturbances trigger instability waves in the boundary layer. For super/hypersonic boundary layers,the external disturbances first interact with the shock ahead of the flying vehicles before entering the boundary layer. Since direct numerical simulation(DNS) is the only available tool for its comprehensive and detailed investigation, an important problem arises whether the numerical scheme, especially the shock-capturing method, can faithfully reproduce the interaction of the external disturbances with the shock, which is so far unknown.This paper is aimed to provide the answer. The interaction of weak disturbances with an oblique shock is investigated, which has a known theoretical solution. Numerical simulation using the shock-capturing method is conducted, and results are compared with those given by theoretical analysis, which shows that the adopted numerical method can faithfully reproduce the interaction of weak external disturbances with the shock.  相似文献   

20.
The results of an experimental investigation of boundary layer stability in a gradient flow with a high degree of free-stream turbulence are presented. The question of the possible artificial generation, the further development and the effect on laminar-turbulent transition of instability waves (Tollmien-Schlichting waves) in the boundary layer on a wing profile is considered for a level of free-stream turbulence =1.75% of the free-stream velocity; the sensitivity of the flow to the disturbances and their control by means of boundary layer suction are investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 52–58, March–April, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号