首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title complex, [Li2(D2O)6][Li(C9H27SSiO3)2]2·2D2O, is the first compound with an S—M bond (M = alkali metal) within an unusual type of lithate anion, [Li(SR)2] {where R is Si[OC(CH3)3]3}. There is a centre of symmetry located in the middle of the Li2O2 ring of the cation. All Li atoms are four‐coordinate, with LiO4 (cations) and LiO2S2 (anions) cores. The singly charged [Li(SR)2] anions are well separated from the doubly charged [Li2(D2O)6]2+ cations; the distance between Li atoms from differently charged ions is greater than 5 Å. Both ion types are held within an extended network of O—D⋯O and O—D⋯S hydrogen bonds.  相似文献   

2.
Redox intercalation of NH4+ into vanadyl phosphate dihydrate (VOPO4·2H2O) leads to a two-phase (NH4)xVOPO4·H2O (x=0.2−0.9) compound with interlayer distances of 6.7 and 6.4 Å. Ammonium ions can be incorporated into the interlayer space of VOPO4 also by an ion exchange, starting from alkali-metal redox-intercalated vanadyl phosphate MexVOPO4·yH2O (Me=Li, Na, K, Rb). Several phases are formed during the ion exchange, one of them with the interlayer distance corresponding to the original MexVOPO4·yH2O phase, the second one corresponding to formed (NH4)xVOPO4·H2O. In addition, a third phase is formed by the ion exchange when Li0.98VOPO4·1.98H2O or Rb0.60VOPO4·1.3H2O are used as starting compounds. An opposite ion exchange of NH4+ for Me+ starting from (NH4)xVOPO4·H2O does not proceed.  相似文献   

3.
The gas-phase molecular structure of μ-oxo dimer of aluminium(III) porphyrin, (AlP)2O, has been studied for the first time by density functional theory calculations using the B3LYP and M06 functionals and triple-ζ valence basis sets. The molecule has two conformers with equilibrium structures of D 4d and D 4h symmetries with parallel macrocycles and aluminium-oxygen distances of 1.680–1.684 Å (M06/cc-pVTZ). The aluminium atom lies out of the plane of the four central nitrogen atoms and forms a square-based pyramid with them, with the following parameters (M06/cc-pVTZ): r(Al–N) = 2.030–2.031 Å, r(N···N) = 2.803–2.804 Å (the side of the pyramid base), z(Al)–z(N) = 0.434–0.446 Å (the height of the pyramid).  相似文献   

4.
The novel title compound, poly­[octa‐μ‐aqua‐octa­aqua‐μ‐decavanadato‐hexalithium], contains [V10O28]6− polyanions with 2/m symmetry linked by centrosymmetric [Li6(H2O)16]6+ cation chains. The [V10O28]6− polyanions form a two‐dimensional network with [Li6(H2O)16]6+ chains via O‐polyanion–Li‐chain coordination, with Li—O bond lengths in the range 2.007 (5)–2.016 (5) Å. The hexalithium hexadecahydrate chain is composed of a centrosymmetric pair of LiO6 octahedra and four distorted LiO4 tetrahedra. Hydro­gen bonds occur between the polyanion and the Li‐based chains, and within the Li‐based chains.  相似文献   

5.
A novel mixed alkali metal hydrated borate NaCs[B10O14(OH)4] was synthesized under hydrothermal conditions. Its structure was determined by single-crystal X-ray diffraction and further characterized by FT-IR spectroscopy, TG-DTA, powder X-ray diffraction, and chemical analysis. NaCs[B10O14(OH)4] crystallizes in monoclinic space group P2/c with a = 7.6588(3) Å, b = 9.0074(3) Å, c = 11.8708(6) Å, and β = 115.682(3)°. The crystal structure of NaCs[B10O14(OH)4] consists of Na–O, Cs–O polyhedral, and [B10O14(OH)4]2? polyborate anions. [B10O14(OH)4]2? units are connected together through common oxygen atoms forming a 1D helical chain-like structure, which are further connected by O–H···O hydrogen bonds forming a 3D supramolecular structure. Through a designed thermochemical cycle, the standard molar enthalpy of formation of this borate was determined to be ?7888.6 ± 8.1 kJ mol?1 by using a heat conduction microcalorimeter.  相似文献   

6.
The mixed valency compound Na3Fe2S4, which is also formed in iron-sodium polysulfide melts, is oxidized and hydrated to NaFeS2·H2O (x ≈ 2) on air. It is shown by TGA that this hydrate loses the water reversibly between 80–140 °C. A crystal structure model for the water free phase NaFeS2 is proposed (space group I 222,a=6.25 Å,b=10.83 Å,c=5.40 Å). The formation of NaFeS2·xH2O from Na3Fe2S4 and the reversible phase transformation between NaFeS2·xH2O and NaFeS2 are topotactic. Na+ ions in NaFeS2·xH2O are easily exchanged against K+, Rb+, Cs+, Tl+, Ca2+, Sr2+, and Ba2+. The high chemical reactivity of the sodium thioferrates is discussed and their crystal structures are compared with the other alkali metal thioferrate structures.  相似文献   

7.
Complexation of alkali metal cations with 5,11,17,23-tetra-tert-butyl-26,28,25,27-tetrakis(O-methyl-D-α-phenylglycylcarbonylmethoxy)calix[4]arene (L) was studied by means of spectrophotometric, conductometric and potentiometric titrations at 25 °C. The solvent effect on the binding ability of L was examined by using two solvents with different affinities for hydrogen bonding, viz. methanol and acetonitrile. Despite the presence of intramolecular NH···O=C hydrogen bonds in L, which need to be disrupted to allow metal ion binding, this calix[4]arene amino acid derivative was shown to be an efficient binder for smaller Li+ and Na+ cations in acetonitrile (lg K LiL  > 5, lg K NaL  = 7.66), moderately efficient for K+ (lg K KL  = 4.62), whereas larger Rb+ and Cs+ did not fit in its hydrophilic cavity. The complex stabilities in methanol were significantly lower (lg K NaL  =  4.45, lg K KL  = 2.48). That could be explained by different solvation of the cations and by competition between the cations and methanol molecules (via hydrogen bonds) for amide carbonyl oxygens. The influence of cation solvation on complex stability was most pronounced in the case of Li+ for which, contrary to the quite stable LiL + complex in acetonitrile, no complexation was observed in methanol under the conditions used.  相似文献   

8.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq) + 1·Cs+(nb) ? M+(nb) + Cs+(aq) taking place in the two-phase water–nitrobenzene system (M+ = Li+, Na+, H+, NH4 +, Ag+, K+, Rb+, Tl+; 1 = dibenzo-30-crown-10; aq = aqueous phase, nb = nitrobenzene phase) were determined. Furthermore, the stability constants of the 1·M+ complexes in water-saturated nitrobenzene were calculated; they were found to increase in the series of Cs+ < H+, Ag+ < NH4 + < Na+ < Rb+ < Li+ < K+, Tl+.  相似文献   

9.
Two new one-dimensional chain-like compounds, K4Na4[Mn2(H2O)8Mn4(H2O)2(GeW9O34)2] · 20.5H2O (1) and K2Na4Cu2(H2O)12[Cu(H2O)2Cu4(H2O)2(SiW9O34)2] · 15H2O (2), constructed from the sandwich-type clusters, have been obtained by the routine synthetic reactions in aqueous solutions, and their structures were determined by X-ray single crystal diffraction analysis. The crystal data is following: for 1, space group, monoclinic, P 21/n, a = 16.693(3) Å, b = 14.935(3) Å, c = 20.090(4) Å, β = 92.23(3)°, V = 5004.7(17) Å3, Z = 2; For 2, space group, triclinic, P ?1, a = 11.744(2) Å, b = 13.415(3) Å, c = 17.609(4) Å, α = 73.08(3)°, β = 82.68(3)°, γ = 65.18(3)°, V = 2409.1(8) Å3, Z = 1. The crystal structure of 1 shows a 1D ladder-like chain, built up of the sandwich anions [Mn4(H2O)2(GeW9O34)2]12? and the Mn2+ ions. Compound 2 is a polymeric chain, composed of the Cu-substituted sandwich-type anions [Cu4(H2O)2(SiW9O34)2]12? linked by the Cu(H2O)4 clusters. These extended materials based on the sandwich-type polyoxoanions are rarely reported in the POM chemistry.  相似文献   

10.
Hydrothermal reactions of trilacunary precursor A-α-AsW9O34 9? polyoxoanions and nickel ions in the presence of ethylenediamine (en = ethylenediamine) led to two new hexa-Ni-substituted Keggin-type tungstoarsenates [Ni6(μ 3-OH)3(en)3(H2O)6(B-α-AsW9O34)]·6H2O (1) and [Ni6(μ 3-OH)3(en)3(H2O)6(B-α-AsW9O34)]·10H2O (2), which have been characterized by elemental analyses, IR spectra, powder X-ray diffraction, thermogravimetric analyses and single-crystal X-ray diffraction. Crystal data for 1: hexagonal, R3c, a = b = 20.4379(5) Å, c = 21.5062(6) Å, β = 120º, V = 7779.8 (3) Å3 and Z = 6; for 2: momoclinic, P21/c, a = 13.4200(3) Å, b = 19.1428(5) Å, c = 22.8845(9) Å, β = 112.403(3)º, V = 5435.2(3) Å3 and Z = 4. Structural analyses reveal that the [Ni6(μ 3-OH)3(B-α-AsW9O34)] clusters in 1 and 2 are covalently functionalized by neutral en ligands, in which two similar {Ni6(μ 3-OH)3(en)3(H2O)6}9+ cores have been observed by our lab. Notably, 1 and 2 represent the highest number of substituted transition metal ions in all known lacunary Keggin-type polyoxotungstoarsenate monomers.  相似文献   

11.
A powdered sample of uranyl oxalate [UO2(C2O4)(D2O)] · 2D2O (compound I) is studied using neutron diffraction. The crystals are monoclinic, space group P21/c, with a = 5.608(1) Å, b = 17.016(3) Å, c = 9.410(2) Å, β = 98.9369(2)°, Z = 4, R f = 0.042, R I = 0.054, x 2 = 1.5. The main structural units of the crystals are [UO2(C2O4)(D2O)] chains. These chains, which belong to the AK02M1 (A = UO 2 2+ ) crystal-chemical group of the uranyl complexes, lie parallel to [101]. The water molecules in the crystals of I are hydrogen-bonded into zigzag chains running along [100]. Since each third oxygen atom of the chain formed of water molecules is coordinated to the uranium atom, the uranyl oxalate chains are linked into {[UO2(C2O4)(D2O)] · 2D2O} layers that lie normal to [010]. The layers are linked into the framework through interlayer hydrogen bonds (D2O)O-D···O (oxalate).  相似文献   

12.
A lithium ion-sieve manganese oxide (MO) derived from Li-enriched MO was prepared by the glycolic acid complexation method. The Li adsorption performance in a LiCl–NH3·H2O–NH4Cl buffer solution, simulated a spent lithium-ion battery (LIB) processing solution, and actual spent LIB processing solution were studied. An adsorption capacity of 27.4 mg/g was observed in the LiCl–NH3·H2O–NH4Cl buffer solution (Li concentration of 0.2 mol/L, pH?=?9), and the adsorption behavior conformed to the Langmuir adsorption isotherm equation with a linear correlation coefficient (R2) of 0.9996. An adsorption capacity of 19 mg/g was observed in the simulated buffer spent battery solution (Li concentration of 0.15 mol/L, pH?=?7), and an adsorption capacity of 17.8 mg/g was observed in the actual spent battery solution (Li concentration of 0.15 mol/L, pH?=?7). X-ray diffraction, scanning electron microscope, and infrared spectrum results revealed that the structure and morphology of MO are stable before and after adsorption, and the adsorption of MO in all of the abovementioned buffer systems conforms to the Li+–H+ ion-exchange reaction mechanism. The lithium ion-sieve MO demonstrates promise for the recovery of lithium from spent LIBs.  相似文献   

13.
Syntheses and Reactions of Aluminium Alkoxide Compounds Al(OcHex)3 ( 1 ) can be synthesized by the reaction of Al with cyclohexanol under evolving of H2 in boiling xylene. [Li{Al(OCH2Ph)4}] ( 2 ) was obtained by treatment of PhCH2OH with a 1 M solution of LiAlH4 in THF. [{(THF)Li}2{Al(OtBu)4}Cl] ( 3 ) is the result of the reaction of four equivalents of LiOtBu on AlCl3 in THF. 3 is the educt for the reactions with the Lewis‐acids InCl3 and FeCl3 in THF leading to the metalates [{(THF)2Li}2{Al(OtBu)4}] · [MCl4] [M = In ( 4 ), Fe ( 5 )]. The attempt to react InCl3 with four equivalents of LiOtBu leads to only one isolated and characterized product, the complex [Li4(OtBu)3(THF)3Cl]2 · THF ( 6 · THF), which can also be synthesized by the treatment of LiCl with three equivalents of LiOtBu in THF. 1–6 · THF were characterized by NMR, IR and MS techniques as well as by X‐ray structure determinations. According to them, 1 , which is tetrameric in solution, is the first structurally characterized example of the proposed trimer form of aluminium alkoxides [ROAl{Al(OR)4}2] with a central trigonal bipyramidal coordinated Al atom. 2 forms a coordination polymer with a distorted tetrahedral coordination sphere of Li and Al, running along [100]. The trinuclear structure skeleton [{(THF)2Li}2{Al(OtBu)4}]+ is still present in the isotypical metalates 4 and 5 . The counter ions [MCl4] possess nearly Td symmetry. The remarkable structural motif of 6 · THF are two heterocubanes [Li4(OtBu)3(THF)3Cl] dimerized by Li–Cl bonds.  相似文献   

14.
[MnIIxFeII1?x(H2O)6][LiFeIII(ox)3] (with 0 ≤ x ≤ 1) crystallizes in the space group P31c with a = 9.341(3) Å, c = 10.226(3) Å, c/a = 1.0947, and V = 772.8(5) Å3 for Z = 2. The compound has a layered structure with two enantiomeric layers per unit cell. The layers are built up by an iron and lithium oxalate framework with intercalated M(II)-water octahedra of the formula [MnIIxFeII1?x(H2O)6][MIMIII(ox)3]. The value of x cannot be specified at present. The structure displays intermolecular hydrogen bonding between the layers.  相似文献   

15.
A pure mixed alkali–alkaline earth metal borate of Li2Sr4B12O23 with microporous structure has been synthesized by high-temperature solid state reaction, and characterized by XRD, FT-IR, TG techniques, and chemical analysis. The molar enthalpies of solution of Li2Sr4B12O23 in 1 mol L?1 HCl(aq), and of SrCl2·H2O(s) in [1 mol L?1 HCl + H3BO3 + LiCl·H2O](aq) have been determined by microcalorimeter at 298.15 K, respectively. From these data and with the incorporation of the previously determined enthalpies of solution of H3BO3(s) in 1 mol L?1 HCl(aq), and of LiCl·H2O(s) in [1 mol L?1HCl + H3BO3](aq), together with the use of the standard molar enthalpies of formation for SrCl2·6H2O(s), LiCl·H2O(s), H3BO3(s), HCl(aq), and H2O(l), the standard molar enthalpy of formation of ?(11,534.0 ± 10.0) kJ mol?1 for Li2Sr4B12O23 was obtained on the basis of the appropriate thermochemical cycle.  相似文献   

16.
Two novel hexa-nickel(II)-substituted Keggin-type {Ni6PW9}-based tungstophosphates [Ni6(μ 3-Tris)(en)3(Pr)(damp)(H2O)2(B-α-PW9O34)]·10H2O (1) and [Ni6(μ 3-Tris)(en)3(damp)2(H2O)2(B-α-PW9O34)]·7H2O (2) (en = ethylenediamine, Pr = CH3CH2COO?, damp = 2-aminoisobutyrate, Tris = pentaerythritol) were hydrothermally synthesized and characterized by IR spectra, elemental analyses, powder X-ray diffraction, thermogravimetric analyses, and single-crystal X-ray diffraction. Crystal data for 1: orthorhombic, Pca21, a = 21.6962(7) Å, b = 20.6398(5) Å, c = 14.7825(4) Å, β = 90º, V = 6619.7(3) Å3, Z = 4; for 2: orthorhombic, Pca21, a = 21.6978(9) Å, b = 20.6658(7) Å, c = 14.7767(4) Å, β = 90º, V = 6625.9(4) Å3, Z = 4. 1 consists of a {Ni6(μ 3-Tris)(en)3(Pr)(damp)(H2O)2}9+ core and a [B-α-PW9O34]9? (PW9) unit and is covalently functionalized by one Pr and one damp, as well as en and Tris ligands. The structure of 2 is the same to 1 except that the Pr anion in 1 is substituted by the other damp ligand. Most interestingly, 1 contains four kinds of organic ligands, while 2 includes three kinds of organic ligands, which are first observed in polyoxometalate chemistry.  相似文献   

17.
A new compound of [Cu8(Metz)9](OH)·xH2O (x≈3) (1) (Metz = 5-Methyltetrazole) has been prepared and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The crystal is of hexagonal, space group P63/m with a = b = 13.988(1) Å, c = 16.309(2) Å, α = β = 90°, γ = 120°, V = 2 763.5 (4) Å3, Mr = 1327.13, D c = 1.595 g cm?3, Z = 2, F(000) = 1 316, μ = 3.076 mm?1, the final R = 0.0494 and wR = 0.1532 for 1,731 observed reflections (I > (I)). In this compound, the [(CuII)2(CuI)6(Metz)9]+ cationic clusters are connected together through CuI cations and Metz ligands and result in a three-dimensional framework. Remarkable, three-dimensional intersecting channels exist in it. The variable temperature magnetic investigations indicate that 1 exhibits typical antiferromagnetic behaviors. N2 gas adsorption measurements at 77 K showed that compound 1 possesses permanent porosities.  相似文献   

18.
三维有序大孔LiAlMnO_4的合成及其Li~+脱嵌行为(英文)   总被引:1,自引:0,他引:1  
刘石峰  杨立新  高丽  林杨 《无机化学学报》2010,26(10):1895-1899
<正>In the past half century,several methods like solvent extraction[1],precipitation[2]and ion exchange[3,4]have been extensively studied for lithium recovery from seawater and salt lake brine.  相似文献   

19.
In this contribution, ab initio methods have been used to study the open-shell CO+–He van der Waals (vdW) complex in both the ground and the first Π excited electronic state. Calculations were performed at the UCCSD(T) level of theory in the framework of the supermolecule approach using the cc-pVTZ basis set complemented with a set of standard bond functions in the middle of the vdW bond. Calculations predict a most-stable equilibrium conformation with β e=45°, R e =2.85 Å and D e =275 cm?1 for the ground CO+(X2Σ)–He(1S) state and β e=90°, R e =2.70 Å and D e =218 cm?1 for the excited CO +(A2Π)–He(1S) state. The dipole moment μ and independent components of the field polarizability α of the CO +–He vdW complex have been studied at the calculated equilibrium geometry of these states. The vertical excitation energies from the ground CO+(X 2Σ)–He(1S) to the excited CO+(A2Π)–He (1S) electronic state and corresponding shifts in the fluorescent spectrum with respect to the isolated CO+ molecule are also presented  相似文献   

20.
The novel polyoxothioanion [Mo4S4O4(OH)2(OH2)3pba]2? where pba4? ligand is the 1,3-propylenebis(oxamate), was prepared by reacting Mo12S12O12(OH)12(OH2)6 ring with [Cu-pba]2? in aqueous medium. NaK[Mo4O4(μ-S)4(μ-OH)2(μ-H2O)(H2O)2(pba)] ·7H2O was isolated in the solid state and fully characterized by X-ray diffraction study (tetragonal, P4(2)/m [a=20.4962(4) Å; b=20.4962(4) Å; c=14.7013(5) Å). The molecular structure consists of an arc cycle shape tetranuclear enchainment {Mo4S4O4(OH)2 (OH2)3} closed by a pba4? ligand. The 3-D packing, resulting from the connection between K+ and Na+ and the coordination complex {Mo4-pba]2? is described. The 1H-NMR characterization of the complex in aqueous solution is given. The 1H-NMR spectrum exhibits four signals assigned to four enantiotopic protons of the alkyl chain of the pba4? ligand and is in agreement with crystal structure of the complex [Mo4-pba]2?. The compound was also characterized by infrared spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号