首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 120 毫秒
1.
深海海底山环境下声传播水平折射效应研究   总被引:2,自引:0,他引:2       下载免费PDF全文
李晟昊  李整林  李文  秦继兴 《物理学报》2018,67(22):224302-224302
声波在深海海底山环境中传播时,海底山会对声传播产生重要影响.2016年在南海深海进行了一次海底山环境下的声传播实验,观测到了由海底山引起的三维声传播效应,本文利用BELLHOP射线理论解释了海底山环境下的三维声传播机理.结果表明:声波在传播过程中与海底山作用后破坏了深海会聚区结构,导致传播损失增大,在海底山后形成具有明显边界的声水平折射区,利用二维声传播模型无法解释实验现象,海底山后声水平折射区实验测量的声场结构与N×2D模型计算结果存在明显差异,实验的传播损失比N×2D模型计算结果大10 dB.通过三维射线模型分析N×2D模型计算结果与实验结果存在明显差异产生的原因,发现由于声波水平折射作用,部分声线无法到达接收器,使得三维声传播效应对海底山后一定角度范围内声场影响较为明显.因此,深海海底山会引起明显的三维水平折射效应,应在水下目标探测和定位等应用中给予重视.  相似文献   

2.
In the 1950s, D'yakov and Kontorovich predicted that under certain conditions perturbed shock waves in nonideal gases can become unstable by emitting undamped sound and entropy-vortex waves. For the last 45 years, though, little progress has been made in the identification and numerical modeling of physical conditions for which this phenomenon might occur. Using a van der Waals equation of state, we present for the first time a dynamical simulation of a D'yakov-Kontorovich instability. The two-dimensional emission pattern of acoustic waves appearing in the simulation agrees with the prediction of a linearized theory.  相似文献   

3.
Bright and dark matter wave solitons are constructed analytically in a three-dimensional (3D) highly anisotropic Bose-Einstein condensate (BEC) with a time-dependent parabolic potential, and numerical simulations are performed to confirm the existence and dynamics of such analytical solutions. Different classes of bright and dark solitons are discovered among the solutions of the generalized anisotropic (3+1)D Gross-Pitaevskii equation. Our results demonstrate that the bright and dark solitary waves can be manipulated and controlled by changing the scattering length, which can be used to compress the second-order bright and dark solitons of BECs into desired peak density.  相似文献   

4.
在管道后传声的数值模拟中,必须考虑平均流剪切层的散射效应,然而在非均匀剪切流动下时域求解线化欧拉方程会面临Kelvin-Helmholtz不稳定波产生和放大的难题。已有的不稳定波抑制技术通常很难获得令人满意的结果。本文采用一种混合方法,首先引入有限时段的宽频声源波包将声波和不稳定波分离,进而采用声源滤波器技术对不稳定波进行抑制。数值验证算例选择半无限长轴对称环形硬壁直管道,采用计算气动声学方法时域求解2.5维线化欧拉方程,无背景流动的数值解与解析解符合很好,验证了程序的精度与可靠性,非均匀流动算例则表明所采用波包加声源滤波器混合方法对不稳定波抑制效果明显,对声场影响很小,充分显示了该方法的精度与可行性。  相似文献   

5.
We study Bose-Einstein condensates with purely dipolar interactions in oblate traps. We find that the condensate always becomes unstable to collapse when the number of particles is sufficiently large. We analyze the instability, and find that it is the trapped-gas analogue of the "roton-maxon" instability previously reported for a gas that is unconfined in 2D. In addition, we find that under certain circumstances the condensate wave function attains a biconcave shape, with its maximum density away from the center of the gas. These biconcave condensates become unstable due to azimuthal excitation--an angular roton.  相似文献   

6.
Tone noise radiated through the inlet of a turbofan is mainly due to rotor-stator interactions at subsonic regimes (approach flight), and to the shock waves attached to each blade at supersonic helical tip speeds (takeoff). The axial compressor of a helicopter turboshaft engine is transonic as well and can be studied like turbofans at takeoff. The objective of the paper is to predict the sound power at the inlet radiating into the free field, with a focus on transonic conditions because sound levels are much higher. Direct numerical computation of tone acoustic power is based on a RANS (Reynolds averaged Navier–Stokes) solver followed by an integration of acoustic intensity over specified inlet cross-sections, derived from Cantrell and Hart equations (valid in irrotational flows). In transonic regimes, sound power decreases along the intake because of nonlinear propagation, which must be discriminated from numerical dissipation. This is one of the reasons why an analytical approach is also suggested. It is based on three steps: (i) appraisal of the initial pressure jump of the shock waves; (ii) 2D nonlinear propagation model of Morfey and Fisher; (iii) calculation of the sound power of the 3D ducted acoustic field. In this model, all the blades are assumed to be identical such that only the blade passing frequency and its harmonics are predicted (like in the present numerical simulations). However, transfer from blade passing frequency to multiple pure tones can be evaluated in a fourth step through a statistical analysis of irregularities between blades. Interest of the analytical method is to provide a good estimate of nonlinear acoustic propagation in the upstream duct while being easy and fast to compute. The various methods are applied to two turbofan models, respectively in approach (subsonic) and takeoff (transonic) conditions, and to a Turbomeca turboshaft engine (transonic case). The analytical method in transonic appears to be quite reliable by comparison with the numerical solution and with available experimental data.  相似文献   

7.
高智  卢文强 《物理学报》1983,32(6):713-722
本文探讨了非平衡、非绝热气体中扰动传播的特性。包括弛豫波、压力波、密度波以及热模。基于热扰具有反馈机制的看法,导出了非平衡、非绝热气体中扰动传播的基本方程式和色散关系。由此得到了一些新的结论,例如,扰动能够放大或缓慢衰减,后者为大气中次声波吸收的异常现象提供了一种合理的解释;非绝热能够引起很大的弥散现象;非绝热过程对噪声的传播能够产生显著的阻尼作用等等。此外,压力波、密度波和热模不稳定的结论与气体放电失稳性的实验相符合。 关键词:  相似文献   

8.
The objective of this paper is to apply both experimental and numerical methods to investigate acoustic waves induced by the oscillation and collapse of a single bubble. In the experiments, the schlieren technique is used to capture the temporal evolution of the bubble shapes, and the corresponding acoustic waves. The results are presented for the single bubble generated by a low-voltage bubble generator in the free field of water. During the numerical simulations, a three-dimensional (3D) weakly compressible model is introduced to investigate the single bubble dynamics, including the generation and propagation of acoustic waves. The results show that (1) Compression wave, rarefaction wave and shock wave are generated during expansion stage, collapse stage and rebound stage of the bubble respectively. (2) Compression waves are induced by the rapid expansion of the bubble and eventually steepen into one shock wave propagating outward in the liquid, then another strong shock wave is emitted at the final collapse stage. The velocity and pressure of the liquid field increases after the shock wave. (3) Rarefaction waves are generated during the collapse stage due to the contraction of the bubble. The rarefaction wave reduces the liquid pressure and its spatial distribution is dispersive. The pressure of these acoustic waves and their effect on the liquid velocity attenuate with the increase of propagation distance.  相似文献   

9.
An anisotropic equation of state is proposed for accurate extrapolation of high-pressure shock Hugoniot states to other thermodynamics states for shocked single crystals and polycrystalline alloys. The proposed equation of state represents mathematical and physical generalization of the Mie-Grüneisen equation of state for isotropic material and reduces to this equation in the limit of isotropy. Using an anisotropic nonlinear continuum framework and generalized decomposition of a stress tensor [Int. J. Plasticity 24, 140 (2008)], the shock waves propagation along arbitrary directions in anisotropic solids of any symmetry can be examined. The non-associated strength model includes the distortion effect of the yield surface which can be used to describe the anisotropic strength differential effect. A numerical calculation showed that the general pulse shape, Hugoniot Elastic Limits (HELs), and Hugoniot stress levels for aluminum alloy 7010-T6 agree with the experimental data. The results are presented and discussed, and future studies are outlined.  相似文献   

10.
Inertial range spectra of sound modes in several space dimensions are determined theoretically and by numerical experiments. The latter indicate a spectrum of shock waves as predicted by Kadomtsev and Petviashvili (1973).  相似文献   

11.
We study the superfluid character of a dipolar Bose-Einstein condensate (DBEC) in a quasi-two dimensional geometry. We consider the dipole polarization to have some nonzero projection into the plane of the condensate so that the effective interaction is anisotropic in this plane, yielding an anisotropic dispersion relation. By performing direct numerical simulations of a probe moving through the DBEC, we observe the sudden onset of drag or creation of vortex-antivortex pairs at critical velocities that depend strongly on the direction of the probe's motion. This anisotropy emerges because of the anisotropic manifestation of a rotonlike mode in the system.  相似文献   

12.
《Physics letters. A》2020,384(9):126187
We study the (3+1)-dimensional Gross-Pitaevskii / Nonlinear Schrödinger equation describing a dipolar Bose-Einstein condensate. Bound states are computed using accurate numerical techniques. When the dipolar strength is negative, the total number of atoms vs. frequency relationship for these bound states is multi-valued and possesses a cusp point, which corresponds to a “candlestick” ground state. Direct simulations of this ground state exhibit strongly-anisotropic collapse of its nucleus, with different contraction rates along the dipole axis and perpendicular to it. We propose an anisotropic self-similar theory to explain this dynamics. The physical implications are discussed.  相似文献   

13.
The coherence time and transverse coherence length of a low-frequency (100–300 Hz) sound field that is formed by an omnidirectional point source at a distance of 10–30 km in a shallow-water acoustic waveguide, which is characteristic of an open ocean shelf, were estimated analytically and in a numerical experiment. An anisotropic field of background internal waves is considered as a source of spatiotemporal fluctuations. It is shown that the coherence time decreases as the frequency increases, and strongly depends on the perturbation-movement direction. The transverse coherence length is primarily determined by phase incursions that are related to the cylindrical shape of the acoustic-wave front. In the case of transverse propagation, background internal waves may lead to significant variations in this length. The introduction of compensating phase corrections during processing provides a considerable increase in the average transverse coherence length.  相似文献   

14.
基于波传播算法的火焰不稳定性   总被引:3,自引:0,他引:3  
基于波传播算法构造了多组分反应流的数值格式,利用CH4空气基元反应动力学模型,并采用分离算法,对CH4空气混合物中,入射激波与火焰的相互作用,以及反射激波与火焰的二次作用过程进行了数值模拟.根据计算结果,讨论了激波诱导火焰失稳的发展过程及其特点.结果表明,Helmholtz不稳定、RichtmyerMeshkov不稳定以及反应放热速率对火焰失稳过程有重要影响.计算结果与实验结果进行了比较,对数值方法的有效性进行了验证.  相似文献   

15.
The propagation characteristics of magnetization waves, as well as the instabilities of sound waves in a self-gravitating dark interstellar molecular cloud containing ferromagnetic dust grains and baryonic gas clouds, have been theoretically investigated by including the dynamics of both ferromagnetic dust grains and baryonic gases. It has been shown that there exist two types of subsonic or supersonic (depending on the field strength of the magnetization) transverse magnetization waves, which can be regarded as counterparts of Alfvén waves (for the parallel propagation) and magnetosonic waves (for the perpendicular propagation) in a magnetoactive plasma. It has also been found that, in addition to the usual Jeans instability, the sound waves suffer a new type of instability, which is due to the combined effects of the baryonic gas dynamics and self-gravitational field in both weakly and highly collisional regimes.  相似文献   

16.
We have investigated the expansion of a Bose-Einstein condensate of strongly magnetic chromium atoms. The long-range and anisotropic magnetic dipole-dipole interaction leads to an anisotropic deformation of the expanding chromium condensate which depends on the orientation of the atomic dipole moments. Our measurements are consistent with the theory of dipolar quantum gases and show that a chromium condensate is an excellent model system to study dipolar interactions in such gases.  相似文献   

17.
沙莎  陈志华  张庆兵 《物理学报》2015,64(1):15201-015201
本文基于大涡模拟方法, 采用高阶精度格式对平面入射激波以及不同反射距离条件下的反射激波与SF6重气泡相互作用过程进行了三维数值模拟. 数值结果清晰地显示了SF6重气泡在激波作用下诱导Richtmyer-Meshkov不稳定性过程, 揭示了入射激波以及反射激波在气泡界面聚焦诱导射流的过程, 详细分析了不同反射距离条件下反射激波与SF6重气泡作用过程及流场结构.  相似文献   

18.
I.IntroductionMostofthepublishedstudiesontheacousticwaveradiationfromelasticbodyconcen-tratedon1ineartheory.However,iftheamplitudeislargeandthefrequencyishigh,theresultingsoundwavepropagatinginthemediumwillgenerateconsiderablenonlineardistor-tion.Sothest.di.s[1]inthisfieldarelimited.Inthispaperwetreatedasphericalshell.Itconsistsoftwoaspects:oneisthestructuralresponseofasphericalshellinacousticfield.Becausethenonlineareffectofacousticwavecumulateswithpropagatingdistance,itisnegligibleonthesph…  相似文献   

19.
We report a detailed experimental study of vector modulation instability in highly birefringent optical fibers in the anomalous-dispersion regime. We prove that the observed instability is mainly induced by vacuum fluctuations. The detuning of the spectral peaks agrees with linear perturbation analysis. The exact shape of the spectrum is well reproduced by numerical integration of stochastic nonlinear Schr?dinger equations describing quantum propagation.  相似文献   

20.
The entry of a shock wave with the Mach number Mis = 2.03 into a microchannel and its further propagation is numerically studied with the use of kinetic and continuum approaches. Numerical simulations on the basis of the Navier ?? Stokes equations and the Direct Simulation Monte Carlo method are performed for different Knudsen numbers Kn = 8·10?3 and 8·10?2 based on the microchannel half-height. At the Knudsen number Kn = 8·10?3, amplification of the shock wave after its entry into the microchannel is observed. Further downstream, the shock wave is attenuated, which is in qualitative agreement with experimental data. It is demonstrated that results predicted by a quasi-one-dimensional model (which ignores viscosity and heat conduction) of shock wave propagation over a channel with an abrupt change in the area agrees with results of numerical simulations on the basis of the Euler equations. In both cases, shock wave acceleration (amplification) after its entry into the microchannel is observed. At the Knudsen number Kn = 8·10?2, the influence of the entrance shape on shock wave propagation over the microchannel is examined. Intense attenuation of the shock wave is observed in three cases: channel with sudden contraction, junction of two channels with an additional thin separating plate, and rounded junction in the form of a sector with an angle of 90° (quarter of a circumference). It is shown that the microchannel entrance shape can affect further propagation of the shock wave. The wave has the highest velocity in the case with a rounded entrance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号